a2 United States Patent

McHugh et al.

US009235476B2

(10) Patent No.: US 9,235,476 B2
(45) Date of Patent: *Jan. 12, 2016

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(62)

(1)

(52)

SYSTEM AND METHOD FOR LOGICAL
DELETION OF STORED DATA OBJECTS

Applicant: Amazon Technologies, Inc., Seattle, WA
(US)

Inventors: Jason G. McHugh, Seattle, WA (US);
Praveen Kumar Gattu, Redmond, WA
(US); Michael A. Ten-Pow, Seattle, WA
(US); Derek Ernest Denny-Brown, II,
Seattle, WA (US)

Assignee: Amazon Technologies, Inc., Reno, NV
us)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/673,808

Filed: Mar. 30,2015

Prior Publication Data

US 2015/0205677 Al Jul. 23, 2015

Related U.S. Application Data

Division of application No. 13/953,447, filed on Jul.
29, 2013, now Pat. No. 8,996,831, which is a division
of'application No. 12/886,757, filed on Sep. 21, 2010,
now Pat. No. 8,504,758.

Int. Cl.
GO6F 12/14 (2006.01)
GO6F 11/14 (2006.01)
(Continued)
U.S. CL
CPC GO6F 11/1453 (2013.01); GOGF 3/067

(2013.01); GOGF 3/0608 (2013.01);
(Continued)

(58) Field of Classification Search

CPC ...ccoonuenee. Y108 707/99931; Y10S 707/99945;
GOG6F 21/6254; GO6F 17/30289; GO6F
17/3056; GOGF 2209/463; GO6F 9/465;
GOG6F 9/541; GOG6F 17/30; GOG6F 17/3002;
GOG6F 17/30038; GOGF 17/30058; GO6F
17/30067, GOG6F 17/30348; GOGF 17/30371,
GOG6F 17/30557; G06Q 20/206; G06Q 20/4014

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,611,840 Bl 8/2003 Baer etal.
6,684,227 B2 1/2004 Duxbury

(Continued)
OTHER PUBLICATIONS

U.S. Appl. No. 12/978,256 filed Dec. 23, 2010, Jason G. McHugh, et
al.

(Continued)

Primary Examiner — Zhuo Li
(74) Attorney, Agent, or Firm — Robert C. Kowert;
Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

(57) ABSTRACT

Systems and methods for providing object versioning in a
storage system may support the logical deletion of stored
objects. In response to a delete operation specifying both a
user key and a version identifier, the storage system may
permanently delete the specified version of an object having
the specified key. In response to a delete operation specifying
auser key, but not a version identifier, the storage system may
create a delete marker object that does not contain object data,
and may generate a new version identifier for the delete
marker. The delete marker may be stored as the latest object
version of the user key, and may be addressable in the storage
system using a composite key comprising the user key and the
new version identifier. Subsequent attempts to retrieve the
user key without specifying a version identifier may return an
error, although the object was not actually deleted.

20 Claims, 16 Drawing Sheets

oo
version for Speci
570

US 9,235,476 B2

Page 2
(51) Int.ClL 8,285,925 Bl 10/2012 Sorenson, III et al.
8302.169 Bl 10/2012 Presotto ot al.

GOG6F 17730 (2006.01) 8504758 B1* 82013 McHugh et al. c....... 711/100

GO6F 3/06 (2006.01) 2002/0073110 Al 6/2002 Duvillier et al.
(52) US.CL 2002/0103814 Al 8/2002 Duvillier et al.

, 2003/0061245 Al 3/2003 Soria, Jr. et al.
CPC GO6F3/0619 (2013.01); GO6F 3/0652 5003/0147536 Al 82003 Andivahis et al.

(2013.01); GOGF 3/0671 (2013.01); GO6F
11/1435 (2013.01); GOGF 17/3023 (2013.01);
GOGF 17/30117 (2013.01); GOGF 17/30356
(2013.01); GO6F 2201/80 (2013.01); GO6F
2201/84 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

6,874,001 B2 3/2005 Narang et al.

7,099,896 B2 8/2006 Fields et al.

7,496,555 B2* 2/2009 Margoluscccooerevrernncnnne. 1/1
8,131,723 B2 3/2012 Sim-Tang

8,196,191 B2 6/2012 Norman et al.

2005/0262165 Al
2007/0192544 Al
2008/0189240 Al*
2010/0070698 Al
2010/0082553 Al
2010/0169288 Al 7/2010 Brown
2010/0268820 Al 10/2010 Shi et al.

OTHER PUBLICATIONS

11/2005 Scott et al.
8/2007 Frolund et al.
8/2008 Mullins etal.oevveneee 707/2
3/2010 Ungureanu et al.
4/2010 Beatty et al.

U.S. Appl. No. 12/978,253 filed Dec. 23, 2010, Jason G. McHugh, et
al.
U.S. Appl. No. 12/886,757 Filed Sep. 21, 2010, Jason G. McHugh et
al.

* cited by examiner

U.S. Patent

Jan. 12, 2016 Sheet 1 of 16

requester inffiates PUT {ype
oparation specifving & ussr key

US 9,235,476 B2

110

no

storage system assigns
sentingl version-id valus
{0 obizct being PUT
144

¥

storage system storss
new object, overwriting any
existing object with same
key and sentine! version-id
145

e versioning
’ is trned

k:

i

on {enabied}?
120

¥

slorage systerm generales new,
unigue version-id for object
being PUT; assigns It o object
130

¥

storage system stores
new object, along with
assigned version-id
i8¢

i

storage sysiom refims
response (o requesien response
inciudes assigned version-id
170

FIG. 1

U.S. Patent

Jan. 12, 2016

Sheet 2 of 16

reguester inftiates GET type
opearation spscifying a user key
21¢

US 9,235,476 B2

starage system determines the
fatest varsion of the object; assigns
its version-id as the specified
version-id for the instruction
225

o OBJ*-"L T fﬂsffumfcn '
2 spec;ffes a version-id:

220 e

N epeufrwd

=" version is delets marker?
- 230

e f«:’qusste: .
Fas permission 1o af‘cecsq

b4

storage system
refurns grvor indication
270

o &,aecmed version?

storage system refumns the
data object having the
spacified key and version-id
250

FIG. 2

U.S. Patent Jan. 12, 2016 Sheet 3 of 16 US 9,235,476 B2

requester infliates COFY type
operation specifving a user key
210

e CGPY T
OE JECT insty ueé;o:v ™

- Q,OSC!}’SQQS version-ia?
280

storage system dslernmines the
igtast version of the data object;
ass igﬂs Hs vearsion-id as the specified

ersion-id for the instruction storage system makes
325 copy of the specified version
of the data object
230

00 e y»ers:omng)
..................... Sl furnegj on (enab;aaf;f? e

slorage system
assions sentingl version-id storage ,5ys£err generates naw,
value to data objsct copy unigue version-id for
355 the copy of the data object
— 3638

! I

storage system siores dafa

obiect copy in destination storage system stores data object
bucket, overwriting any copy in destination bucket,
exisling dats abject along with assigned version-id
with same key and 374
santing! version-id

storage system relurns
response 1o requester; response
includes assigned version-id
375

FIG. 3

U.S. Patent

refurn error indication
425

firmit responsss (o keys
beginning with specified profix
435

Jan. 12, 2016

Sheet 4 of 16

requester inifiates operation {o list ajl
data object versions in a bucket
418

e TR QGUESTET
N0 " hiag permission (o
e Q0088 bucket object

2

e N SEUCHOST ™ e
specifies prefix? T

cause keys with same
string betweesn prefix and
defimiter to be rolled up info
a single resull efement
449

e IS UCH O™ _
specifies delimiter? 5

ele]

parameters turther refine
whare (within the bucket)
to begin listing
458

YOS e

e N SEUCHONT ™,

spacifies key-marker

e IO VOFSiON-id marker?
450 e

max-keys equals default value
465

“InSHUCHTH ™

10 e 1]
< Specifies max-keys?

return max-Keys
resuits and
continuation
information
475

US 9,235,476 B2

TG,
resuffs than
max-keys?
oo A7 e

refurn all results
mesting criteria
48¢

U.S. Patent Jan. 12, 2016 Sheet 5 of 16 US 9,235,476 B2

requester iniliates DELETE type
operation specifving s user key,
but not spaecifying a version-id
510

e FRQUESTET
Thas permission 10 delets T}
objects in bucket? e
S 520 e

. storage sysiem
rOlLETS Qrror
indicalion
825

T RrSIoning
has ever been
o, EHabled on bucket?

T B30 e

“versioning
is currently
. enabled on bucket? ==

starage system deletes
objact with specified key and
sentinel version-id value, thus
defefing actuail object data
280

storage system generates
g new delels marker with new,

unigue version-id as latest
varsion for specified key;
versioning is suspended: no aciual ohject dafa deleted
storage system delefes conlenis of 8449
a previously stored object having
spacified key and the sentine!
version-id value, if any
580

y

storage system marks previously
stored object having specified
key and sentinst version-id
value as delsie marker, or
generates new delete marker;
delete marker becomes lalest
version for specifisd key

S574

FIG. &

U.S. Patent

Jan. 12, 2016

Sheet 6 of 16 US 9,235,476 B2

requester inftigtes DELETE type
operation speciving both
a user key and a version-id

12

storage system
retums error indication
830

" has pormission (0 .
delete specific versions of
abfects stored in {arget

“reguester

bucket?

y‘e

siorage system deletss object data
with specified user key and version-id

240

i

Storage systom roturns
response indicating deletion

845

VEFSIOn was a dele

no indication of a defete
rarker inciuded in responss
&8¢

e
fo o
marker?

response inoludes an
indication that the delcted
VErSIon was a delate marker
855

FIG. 6

U.S. Patent Jan. 12, 2016 Sheet 7 of 16 US 9,235,476 B2

storage systam creates new buckel;
initial versioning state is "off”
710

!

GET VERSIONING opsrations on buckst
{rmade by requesters with permission
fo chack versioning status) return “off”

720

r

requsster (with permission to maodify
vareioning state) initiates change of
versioning state for bucket using a
PUT VERSIONING operation
730

T VERSIONING ™

~"operation toggles state fro

- offor ‘suspendsd’io -
e ENA0IGU" SIAIGT e

7o

- subsequent GET
PUT VERSIONING operation VERSIONING operations

o N . .
toggles state ;f gﬂ e?i:.ed {made by requesiers with
<0 SUspen OV{: Stars permission) retum buckst
£80 versioning staivs “enabled’
770

5

subseqguent GET
VERSIONING cpsrations
{made by reguestars with
permission} refurn bucket
Versiciing status “suspendsad”
780

e more e

: versinning siate

oy, CHBNGES roquUested? -
S 780

FIG. 7

U.S. Patent Jan. 12,2016

Sheet 8 of 16 US 9,235,476 B2

requester inftiates PUT ACL
operation specifving a user key

810

~BUT ACE™~

" operation specifies

version-id?

storage system determines
the latest version of the data
object; assigns ils version-id
as the specified version-id
for the instruction

yes.

¥

storage sysiem refurns
error indication
860

" version is defote markc!"’ —

e add or modify an ACL for

5;3@{;1;}&30’

&34

- mquo%z‘e -
T has permission f‘o

— ,G“uffed vers,w?“
e 840 e

8P

storage system sels ACL for
cified version of the daia object
850

FIG. 8

U.S. Patent Jan. 12, 2016 Sheet 9 of 16 US 9,235,476 B2

reguester initiates GET ACL
oparation specilving & user key
814

e T GET ACL ™

ocperation specifies a
Version-id?
g2

Poltd

el

(e

storage system determines
the latest version of the daia
object; assigns iis version-id

as the specified version-id o
for the instruction
825
,

I spectiad R
version is delste marker?

has penmission o

no =" A ~
ol = view or retrieve an ACL e
oo 01 SRECIfIEd VEISION 7 ™
T, 240 '
Yesy
¥

storagse system returms
arror indication
260

storage system returns
ACL for specifiad version
of the data object
830

FIG. 9

U.S. Patent

Key=photo.gif

obhiect
1010

Jan. 12, 2016

“Rey=photo.off

 Rey=photo.aif

Sheet 10 of 16

PUT OBJECT

ID=4857693 .

_1D=8930267

bucket
1824
FiG. 10A
“Revephologir | DELETE KEY
‘ 1Dea121212 _ Key=photo.gif
Key=photo.gif f
L AD=4857803
Key=photo.gif
bucket
1028
FiG. 10C
Ww‘—mm..‘m%\
Dalate Marker
- Reymphato gif GET OBJECT
' Rey=phote. gif Key=photo.gif
0=2121212
Key=photo.gif
2=4857683
Key=photo.gif
nucket
G, 10E

1020

US 9,235,476 B2

b ~

L RSyEBRGTL g
P, (D=21291212 4

Rey=pholo.gif
_ID=4357883 .
Key=photo.gif
JD=8830287 .

bucket
1020

FIG. 108

Key:phOfO,gi‘f
L ADETTTITT
!Dn? o oin
KES'}I: 0 yo f{)gif

bucket
1020

FIG. 10D

g 404 No Object Found

U.S. Patent Jan. 12,2016

e SN
T et it o Key=pholo.gif
fO=2121212
Key=photo.gif
.. IDT4BE7EU3 A
Key=photo.gif
e JD=6950287
cket
1020

G 10F

Delote Marker

Keay=photo.gif
o=111111

Key=piicia.gif

o (=2721212 A

Sheet 11 of 16

I0=8830G287
manns s s s

US 9,235,476 B2

“Keve=photo.gif
AD=8930287

s,

W

ié&!e tz '}‘W&?ka;

Key=photo.gi

- 15-—-"?7 111 “3

Key=photo.gif
D=2121212

Key=photo.gif

b (D=dB57683

Key=photo.gif

DELETE VERSION
Kev=photo. gif

Key=photo.gif
{D=4857633
Kay=photo.gif

o ID=5930287
bucket

1020

FiG. 10H

ID=4857603
i

e [D=5930287

bucket
1020
FIG. 10G
R

Delote Marker
Key=pholo.gif
iD=111111
Key=pholo.gif
=212712712
Key=photo.gif
e [D=8830287

bucket
1628

FIG. 101

U.S. Patent Jan. 12, 2016 Sheet 12 of 16 US 9,235,476 B2

PUT OBJECT

Key=photo.gif |
object

140

Key=photo.gif

_ :’:ﬁn)
hucket buickat
1120 1120
FIG. 11A FIG. 11B
PUT OBJECT
Key=photo.gif]
ﬂge

1411

Kay=photo.gif | ‘ Key=photo.gir |
. M {D=sEnlINE]
bucket ?ucket
1420 Hel
FIG. 11C FIG. 11D

DELETE KEY

Key=photo gif Key=photo.gif

D=gentingl
bucket bucket
1120 1124

FiG, 1T1E FIG. 11F

U.S. Patent

Key=pholo.gif

b}ect
1112

Jan. 12, 2016

PUT OBJECT

Kay=phols. gif ;
JD=sentinsl 4

buckeat
1125

FIG. 711G

Key=pholo.g

bject
1113

FIG.

i

PUT OBJECT

Key=phoiogr |
_{D=5530052

T Roy=pholo.gif
JD=8830287
Keay=photo.gif
iD=sentinel

bucket
1127

111

Sheet 13 of 16

US 9,235,476 B2

T Keoyepholo.git |

AD=8930287
Key=pholo.gif i
iD=zentinel

bucket
1125

FIG. 11H

ID=5539062
Key=photo.gif
L AD=8830287
Key=phoio.gif ;
iD=sentinel ./
bucket

1127

G 114

U.S. Patent Jan. 12, 2016 Sheet 14 of 16 US 9,235,476 B2

T Rey=photo.gif “Kev=photo.git |

__iD=5539052 A DELETE KEY

Key=photc.gif g Key=phoic.gif Key=photo. gif
AD=8830257 A _D=8830287

' Defate Marker
Key=phato.gif

Key=photo.gr |

h . f=sE0TING]
bucket Ll el
1127 bucket
1127
FIG. 11K FIG. 11L

A Ky:,:}hoi‘o*g{f
_[D=5539062
Kay=photo.gif ,
fD=BR30287
Delete Marker
| Key=photo.gif
o, iseﬂz‘?i

GET OBJECT
Key=photo.gif

w 404 No Object Found

buckst

Pope FIG. 11M

US 9,235,476 B2

Sheet 15 of 16

Jan. 12, 2016

U.S. Patent

A I
; ; [puuss) ~
FHD EHO %9, e 1§22 k22 LHH g PRy EHY cHY
eomw,%g Aoy
A
FHO EED CHO i35 £d cH#H L#d Ry EHY cHY
0071 dew A
Vel Bid
FHO EHD % vHe £44 cHe FHY ERY | CHY

AN

QQS,%E Ay

U.S. Patent Jan. 12, 2016 Sheet 16 of 16 US 9,235,476 B2

oaimputer system 1300

processor processer Brocessor
13102 13106 R 13101

: Y {

{0 interface 1330

!

data store network interface
code 1325 1322 1340

I

tofrom network

system memory 132

FIG. 13

US 9,235,476 B2

1
SYSTEM AND METHOD FOR LOGICAL
DELETION OF STORED DATA OBJECTS

This application is a divisional of U.S. patent application
Ser. No. 13/953,447, filed Jul. 29, 2013, now U.S. Pat. No.
8,996,831, which is a divisional of U.S. application Ser. No.
12/886,757, filed Sep. 21,2010, now U.S. Pat. No. 8,504,758,
which is hereby incorporated by reference herein in its
entirety.

BACKGROUND

Although some storage systems support the storing of mul-
tiple versions of a file, they typically do not provide version-
aware operations other than those used to support fairly
simple backup and recovery services. In general, currently
available storage services, and their underlying storage sys-
tems, do not support other use models that may require more
access to, and/or control over, multiple versions of a file or
other stored data.

Online and other remote data storage services have become
widely available in recent years. In a typical model, a storage
service may provide storage for backup data, which may be
retrieved in the event of a hardware failure, an accidental
deletion of data, or data loss as a result of a security breach or
other malicious act. Storage services may also provide long-
term remote storage for archival or historical purposes.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow diagram illustrating a method for storing a
data object in a storage system that supports versioning,
according to one embodiment.

FIG. 2 is a flow diagram illustrating a method for retrieving
a data object from a storage system that supports versioning,
according to one embodiment.

FIG. 3 is a flow diagram illustrating a method for copying
a data object that is stored in a storage system that supports
versioning, according to one embodiment.

FIG. 41is a flow diagram illustrating a method for listing the
versions of data objects stored in a storage system that sup-
ports versioning, according to one embodiment.

FIG. 5 is a flow diagram illustrating a method for deleting
a user key in a storage system that supports versioning,
according to one embodiment.

FIG. 6 is a flow diagram illustrating a method for deleting
a specific version of a data object that is stored in a storage
system that supports versioning, according to one embodi-
ment.

FIG. 7 is a flow diagram illustrating a method for changing
the versioning state of a bucket in a storage system that
supports versioning, according to one embodiment.

FIG. 8 is a flow diagram illustrating a method for adding an
access control list (ACL) to a data object in a storage system
that supports versioning, according to one embodiment.

FIG.9 is a flow diagram illustrating a method for retrieving
an access control list (ACL) of a data object from a storage
system that supports versioning, according to one embodi-
ment.

FIGS. 10A-101 illustrate the effects of various operations
on a versioning-enabled bucket in a storage system that sup-
ports versioning, according to one embodiment.

FIGS. 11A-11M illustrate the effects of various operations
on a bucket when a versioning feature is off, enabled, or
suspended, according to one embodiment.

FIGS. 12A-12C illustrate the ordering of elements in a key
mayp, according to some embodiments.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 13 illustrates one embodiment of a computer system
that supports versioning of stored data objects, as described
herein.

While the technology described herein is susceptible to
various modifications and alternative forms, specific embodi-
ments thereof are shown by way of example in the drawings
and will herein be described in detail. It should be understood,
however, that the drawings and detailed description thereto
are not intended to limit the disclosure to the particular form
disclosed, but on the contrary, the intention is to cover all
modifications, equivalents and alternatives falling within the
spirit and scope of the present disclosure as defined by the
appended claims.

DETAILED DESCRIPTION OF EMBODIMENTS

Introduction

The systems and methods described herein may provide
support for storing multiple versions of an object and a variety
of'use cases that depend on such versioning support. In some
embodiments, object versioning may be selectively enabled
or suspended (e.g., by a data owner or privileged user) by
toggling the versioning state of a collection of stored objects.
The storage systems described herein may provide a simple
interface that can be used to store and retrieve object data
from a single stored version of an object or from any of a
series of versions of the object. The systems and methods
described herein for supporting storing multiple versions of a
data object may in some embodiments allow for more control
over the versions of objects than previous storage systems. In
some embodiments, a storage system may be instructed to
store multiple value versions of each object that is identified
by a unique key. The systems and methods described herein
may allow users (e.g., storage service subscribers) and/or
client applications (e.g., tools) to store, retrieve and/or delete
objects without knowing (or needing to know) the versioning
state of the targeted collection of stored objects. However, a
data owner (or privileged user) may (at various points) decide
to enable versioning on a given collection of stored objects,
e.g., in order to support the recovery of deleted data.

The methods described herein may protect users from acci-
dental overwrite, logical corruption, and unintended deletion,
and may allow users to access a sequence of changes to the
value (i.e. changes to the object data, or content) of an object
over time. In some embodiments, each stored object may
include two identifying components: a key and a version
identifier (or “version-id”). In such embodiments, the com-
bination of a key and a version-id may uniquely identify an
object in a bucket. Objects in the same bucket that have the
same key but different version-ids may be referred to as
versions of one another, object versions of the key, or simply
versions of the key. In some embodiments, the versioning
techniques described herein may enable multiple versions of
an object to be stored in the same bucket. In various embodi-
ments, the methods described herein may be employed in
local or remote storage systems, including systems that pro-
vide storage services to users (e.g., subscribers) over the
Internet.

The following concepts and terms may be used herein to
describe systems and methods that support data object ver-
sioning, according to various embodiments:

Bucket—A bucket is a logical container in which objects
may be stored in a storage system on behalf of a user. In
some embodiments, every object may be contained in a
bucket, and every object may be addressable using a
combination of a bucket identifier and one or more iden-
tifiers of the object itself

US 9,235,476 B2

3

Object—Objects are the fundamental entities stored in a
storage system. In some embodiments, the stored
objects may include object data and/or metadata. For
example, each object may include a data object portion,
and a metadata portion (which may include default
metadata and/or versioning related metadata). As noted
above, in some embodiments, an object may be uniquely
identified within a bucket by the combination of a user
key (e.g., an object name) and a version identifier (or
version-id).

Key—A key is an identifier for an object within a bucket. In
some embodiments, every object in a bucket may have
exactly one key, and the combination of a bucket, key,
and version identifier may uniquely identify each object
stored in the storage system.

In some embodiments, the data object portion of an object
may be opaque to the storage system, i.e. it may be treated as
a“black box” entry by the storage system. In various embodi-
ments, the default metadata of an object may include, e.g., a
name-value pair, the date the object was last modified, and/or
an indicator of the content type (i.e. the data type of the
contents of the data object portion of the object). In some
embodiments, the metadata associated with an object may
include system interjected key-value pairs (containing, for
example, a creation date and/or a last modified date), along
with user supplied key-value pairs. Examples of versioning
related metadata are described in more detail below, accord-
ing to various embodiments. In some embodiments, metadata
associated with and/or stored in an object may include an
access control list (ACL). In some embodiments, a developer
may be able to specify custom metadata at the time an object
is stored. In various embodiments, the amount of metadata
that can be associated with a given object may be restricted by
the limits of the interface used, and/or the amount of data
allowed or supported by the system for a request or response
message.

In various embodiments, the storage systems described
herein may include support for the following storage related
tasks:

Create buckets—create and name a bucket that stores data

and/or metadata in objects.

Store data in buckets. In various embodiments, each object
may be stored and retrieved using a unique key, which
may be assigned by the developer of the data or owner of
the bucket. For example, when writing an object to the
storage system, a user may specify a unique key in the
namespace of a bucket owned by the user.

Retrieve data—In various embodiments, a user may
retrieve his or her data (i.e. to read and/or download the
contents of the objects that he or she owns) and/or may
enable others to retrieve that data.

Permissions—In various embodiments, a bucket owner
(and/or another privileged user who has the required
permissions) may grant or deny access to others who
want to upload data into or download data from a par-
ticular bucket.

Delete data—In some embodiments, a bucket owner (and/
or another privileged user who has the required permis-
sions) may delete some of the data stored in the bucket.

List stored objects—In various embodiments, a bucket
owner (and/or another privileged user who has the
required permissions) may request a list of some or all of
the objects stored in the bucket.

As noted above and described in more detail herein, in
some embodiments, a user may need to have special permis-
sion to be able to perform certain operations in the storage
system. For example, a user may need to be designated as a

10

15

20

25

30

35

40

45

50

55

60

65

4

privileged user in the system (and/or for a particular bucket in
the system) in order to check a versioning state, modify a
versioning state, delete objects and/or keys, retrieve logically
deleted data, set permissions on buckets or objects thereof,
etc. In some embodiments, such permissions may be auto-
matically granted to and/or controlled by the bucket owner. In
other embodiments, such privileges may be designated and/or
granted to users by other means and/or based on factors other
than bucket ownership. In various embodiments, some or all
of these permissions may be granted and/or controlled on a
bucket basis. In other embodiments, one or more of these
permissions may be granted and/or controlled on an indi-
vidual object basis, or on the basis of the object type or
content type.

As noted above, in some embodiments, all objects may be
uniquely identified by a key/version-id pair. In such embodi-
ments, operations that retrieve data from objects, such as GET
OBIJECT, GET ACL, and COPY OBJECT operations defined
by an Application Programming Interface (API), may accept
anoptional version-id input that identifies a particular version
of an object from which to retrieve data. For each of these
APIs, if a key is specified, but no version-id is specified, the
system may be configured to automatically determine the
version-id of the latest version of the object having the speci-
fied key, and to retrieve data from that version of the object
(i.e. to automatically fill in the latest version-id for a specified
key if no version-id is specified). In some embodiments,
operations that create new objects, such as PUT OBJECT,
PUT ACL, and COPY OBJECT operations defined by the
API, may automatically generate a unique version-id (which
may be a unique string) and assign it to the newly created
object. In some embodiments, a version-id may be bound to
an object for the lifetime of the object and can never be
changed. In some embodiments, subsequent to the execution
of'a DELETE OBJECT operation that specifies a key, but not
a version-id, attempts to retrieve an object having the speci-
fied key without specifying a version-id (e.g. using GET
OBIJECT, GET ACL, or COPY OBIJECT operations) may
return an error indication. Note, however, that in this case, the
storage system may not have actually deleted any data
objects, or the contents thereof. In some embodiments, in
order to permanently delete an object version, a DELETE
type request may need to specify both a key and a version-id.

Unlike in previous storage systems (e.g., systems in which
all objects are versioned or systems that do not support any
object versioning), in some embodiments of the storage sys-
tems described herein, users may be able to turn object ver-
sioning on and/or off for a given bucket over time. As
described in more detail below, various operations performed
on a bucket and/or on objects thereof may behave differently
depending on whether versioning has been toggled on (i.e. is
“enabled:) or is “off” (or “suspended”) for the bucket. In other
words, at least some of the actions taken to perform requested
accesses may be dependent on whether object versioning is,
or has ever been, enabled for the bucket. In such embodi-
ments, the versioning state is an attribute associated with a
bucket. In some embodiments, the versioning state may ini-
tially be “off”, but may be toggled on (e.g., changed to the
“enabled” state) by a privileged user or bucket owner, and
may be subsequently toggled off again (e.g., changed to the
“suspended” state) by a privileged user or bucket owner. As
described in more detail below, toggling the versioning state
of a bucket may change the default behavior of delete and
store type operations. For example, when versioning is
toggled on, store and delete type operations may not over-
write an object nor actually delete the object. However, tog-
gling versioning oft may not imply that all versions of an

US 9,235,476 B2

5

object are removed in response to a delete type operation or
overwritten in response to a store type operation. Instead, it
may mean that the storage system stops automatically creat-
ing new versions in response to mutating operations, such as
these.

In some embodiments, users may elect to turn object ver-
sioning on after a bucket stores a given number of objects
(e.g., one million objects). At that point, the objects already
stored in the bucket may be accessible using standard APIs
that allow them to be deleted and/or overwritten. However, in
some embodiments, newly added objects within the bucket
(i.e. objects that are PUT into the bucket after versioning has
been enabled) cannot be overwritten and cannot overwrite the
existing objects. In effect, the existing objects (those stored
prior to versioning being enabled) may be thought of as
implicit object versions that have version-ids with a special
sentinel value (e.g., a null value, or some other pre-defined,
reserved value). Note that the special sentinel value may in
some embodiments have the useful property that its lexico-
graphical value is less than that of every other valid version-id
value. In some embodiments, after some use (e.g., after vari-
ous versions of different objects are created and/or removed),
the versioning feature may be turned off again, or suspended.
At that point, accesses may proceed as they would have
before versioning was enabled, and all of the versions of the
objects may be addressable (e.g., as implicit object versions,
or by specifying a version-id). The behavior of store type
operations is described in more detail below, according to
different embodiments.

In some embodiments, a newly created bucket may not
have versioning enabled, but versioning may be enabled for
the bucket at later time. In other words, the default versioning
state of a newly created bucket may be that versioning is “off”
In such embodiments, versioning may be enabled (e.g., at
some point in the future) in order to provide recovery from
unintended overwrites and deletions, or to archive objects so
that multiple versions of them can be retrieved later. Before
versioning is enabled for a bucket, the storage system may
behave as if versioning were not supported in the system at
all. For example, prior to enabling versioning for a particular
bucket, the bucket may exhibit the following characteristics
and behaviors: only one data object having a given key may
exist in the bucket, a GET OBJECT operation may be used to
retrieve an object that is stored in the bucket, a PUT OBJECT
operation may be used to store an object in the bucket (and
may overwrite an existing object with the same key), and a
DELETE OBJECT operation may be used to remove the
object. In some embodiments of a system that supports ver-
sioning, if versioning is not enabled for a particular bucket
(i.e. if the versioning state is “oft” or “suspended”), objects
stored in that bucket may be assigned a special sentinel ver-
sion-id value. In some embodiments, if versioning is later
enabled for the bucket, the objects already stored in the bucket
(i.e. those stored in the bucket while versioning was off or
suspended) may be unchanged. For example, the version-id
value (i.e. the sentinel value), object data (i.e. contents), and
permissions associated with any previously stored objects
may remain the same as they were before versioning was
enabled.

The most common access pattern for a storage system may
be a request to access the latest version of an object (i.e. the
latest version of an object having a specific user key). A naive
implementation of such an access in a system that supports
the toggling of versioning state may require that a symbolic
link be generated linking an access request to a user key that
does not include a version-id (i.e. a non-versioned access) to
a specific version of the object having the specified user key.

10

15

20

25

30

35

40

45

50

55

60

65

6

Such a link may be thought of as a pointer that maps a “key K
with no version specified” to “key K with version V”. Cre-
ation and maintenance of such pointer/link entities may have
anegative impact on the performance and/or scalability of the
storage system. For example, in systems that rely on pointer/
link entities, in order to migrate stored objects from a storage
system (or bucket thereof) for which versioning is not sup-
ported to a storage system (or bucket) for which versioning is
supported, a unique version-id may need to be generated for
and assigned to each and every pre-exiting object in the stor-
age system or bucket, and a pointer to the latest version of
each object may need to be created and maintained as other
versions are added to and/or deleted from the storage system
or bucket.

The systems and methods described herein may in various
embodiments provide “latest version” support without the
need to explicitly generate such symbolic links, and without
relying on locking data objects and/or versions thereof. This
may in some embodiments allow the system to maintain
simple access to objects, and to maintain backwards compat-
ibility in the semantics and implementation of the system for
customers who choose not to enable object versioning, or
choose to delay its adoption for their buckets. Because of
these requirements, and because many object versions may
exist in the storage system or a bucket thereof for a given key,
the users may need to disambiguate which version that they
want to get, copy, or delete by providing a specific version
identifier for any accesses to that key. However, requiring this
in all cases may complicate accesses to stored objects (e.g.,
accesses made via a web browser in a web-based storage
service use-case). Instead, the systems described herein may
provide latest version support by an extension of the under-
lying data structure in which data and metadata of various
objects are stored and through the use of a FIND NEAREST
operation defined by the API such that a version-id may not
need to be specified for all accesses to objects stored in the
system.

In some embodiments, the version-ids described herein
may include sequencers with the property that the most sig-
nificant bytes of the version-id (i.e. a sequencer portion)
encode the time at which the version-id was generated. In one
example, the sequencer may encode a value representing the
difference between a predetermined time in the distance
future and the time at which the sequencer (or version-id) was
created. In some embodiments, the system may store objects
that include a series of version-ids (or sequencers thereof) that
has a total ordering across all sequencers. In such embodi-
ments, the result of a comparison of the version-ids of the
stored objects may be the same as the result of a comparison
of the times at which the version-ids (or sequencers thereof)
were created. In some such embodiments, a FIND NEAREST
operation specifying a given user key, may return either the
firstkey-value pair in the total ordering ofkey-value pairs that
includes the given user key, or the next key-value pair in the
total ordering of key-value pairs.

In some embodiments, a single Unicode data point (e.g.,
the null character or another pre-defined, reserved character)
may be introduced into the version-id as a delimiter character
to connect a user key with the sequencer. In such embodi-
ments, sequences of <key, value> pairs (for which the key
may be a composite key consisting of a user key, followed by
a connector or delimiter character, followed by a version-id)
may be stored within a data structure, e.g., in a key map, to
reflect an overall ordering of objects in a particular bucket.
Note that in some embodiments, the chosen delimiter char-
acter may not be allowed in a user-specified key, or in any
user-specified portion of the composite key described above.

US 9,235,476 B2

7

However, in some such embodiments, this character may be
used by the storage system for internal operations, as
described herein. In some embodiments, the version-id for
each explicit object version may include a sequencer portion
and an ID portion, while the version-id for an implicit object
version may be a special sentinel value. In some embodi-
ments, the ID portion of a version-id for an explicit object
version may be generated by the system (e.g., randomly, or
using another suitable approach), and may be unique to the
target bucket and/or the namespace for the specified user key.
In other embodiments, the ID portion may be assigned by a
data owner or privileged user, and may be required to be
unique to the target bucket and/or the namespace for the
specified user key. In some embodiments, the ID portion may
be a globally unique identifier (GUID). For example, in some
embodiments, the composite key for an explicit object ver-
sion may be of the form shown below, and the combination of
the sequencer and the ID portion may be referred to collec-
tively as the version-id for the explicit object version.

[bucket/user key][version delimiter][sequencer][ID]

In one example, the version delimiter for a composite key
may be a null character (e.g., 0x00), and the version-id may
comprise 16 bits (e.g., 8 bits for the sequencer portion and 8
bits for the ID portion). Other numbers and combinations of
delimiters (or delimiter bits), sequencers (or sequencer bits),
and identifiers (or identifier bits) may be included in a com-
posite key, in other embodiments. The use of the composite
key described above, along with a FIND NEAREST opera-
tion, may in some embodiments provide a way for a storage
system to automatically ascertain the version-id of (and
access) the latest object version for a key in constant time and
without adding any additional indirection. Thus, in some
embodiments the number of input/output operations required
to put, get and/or delete keys in systems that support the
toggling of versioning state and APIs that may or may not
include a version-id may not be significantly different than
the number of input/output operations used in standard
accesses to keys in systems that do not support versioning or
the toggling of versioning state. In other words, the systems
described herein may efficiently determine the latest version
of an object, so that the performance of an operation to iden-
tify and retrieve the latest version of an object (i.e. when the
version-id not specified) may be essentially the same as the
performance of an operation to retrieve any arbitrary object
version when the version-id is specified. By contrast, naive
link implementation approaches, such as that described
above, may double the cost of such accesses in many, if not
most, situations.

As described in more detail below, the efficient logical
deletion of an object may be supported in the underlying data
structure of the storage systems described herein by the inclu-
sion of object versions called “delete marker objects”, or
simply “delete markers”. For example, in some situations, a
user may wish to block or limit access to some or all versions
of'a key without removing the key or its associated data from
the storage system and/or bucket in which it is stored. In some
embodiments, the system described herein may create delete
markers within the data structure to denote the logical dele-
tion of the key. In such embodiments, the objects having the
specified key may not actually be removed from the bucket in
which they are stored, and may still be addressable and/or
their contents may still be accessible (e.g., to the bucket
owner and/or another privileged user).

As described herein, a delete marker is a special type of
object version that may have no data associated with it. In
some embodiments, a delete marker may be used to indicate
that an object having the same user key as the delete marker

10

15

20

25

30

35

40

45

50

55

60

65

8

has been logically deleted. As described in more detail below,
a delete marker may be created by the storage system in
response to a DELETE OBJECT operation that specifies only
a user key and not a version-id. This newly created delete
marker may be the latest version of the key specified in the
DELETE OBIJECT operation. Note that in some embodi-
ments, multiple delete markers may be created for a given
key, as described in more detail below.

Delete markers are unique in some ways, but may be
treated the same as other entries in the underlying data struc-
ture by most components of the storage system. The use of
delete markers may provide the added benefit of supporting
simple object lineage, and may allow users to track object
creation, object overwrite, object delete, and object re-cre-
ation use cases. Being able to track object lineage, as in some
embodiments, may be especially useful in certain security
applications.

In various embodiments, delete markers may behave like
other object versions in the following ways:

Delete markers entries within the data structure may have
the same size and impact on algorithmic running time as
other object version entries.

They may appear in the results of LIST VERSIONS opera-
tions.

They may have an associated user key and version-id.

They may be the “latest” version of a key.

They may be explicitly deleted using their version-id.

Only a user who has the required permissions (e.g., the
bucket owner and/or another privileged user to whom
such permissions have been granted) may delete a delete
marker stored in a given bucket.

There may be a storage cost associated with them, e.g., in
terms of the number of bytes in the bucket and key.

They may need to be explicitly deleted in order to delete the
bucket in which they are stored.

They may have an owner (e.g., the requester that performed
the DELETE OBJECT operation that created them).

They may have a “last modified” date.

In various embodiments, delete markers may be different
from other object versions in the following ways:

They may not have data associated with them.

They may not have an ACL (e.g., because an ACL, may

have data associated with it).

Only requesters with permission to access delete markers
in the bucket in which they are stored may learn of their
existence (e.g., using a LIST VERSIONS operation, as
described in more detail below).

A user may not be able to explicitly retrieve them, because
they have no value. The result of such an attempt may be
the return of an error indication.

A DELETE VERSION type operation (such as one defined
by an API) may be the only operation described herein
that can be applied to operate on (rather than merely
expose the existence of) a delete marker.

A delete marker may mark the logical deletion of an object,
and may be used to support end-user logical deletion as well
as undelete operations. In some embodiments, the use of
delete markers may protect users from various accidental
deletion scenarios.

As noted above, the systems described herein may include
operations (e.g., as defined by an API) that support and under-
stand object versioning, some of which may behave differ-
ently depending on the current (and/or past) versioning state
of a targeted bucket. For example, in some embodiments, an
operation for storing a data object in the system (e.g., a PUT
OBIJECT operation) may guarantee that the object will never
be overwritten, and that only a privileged user with permis-

US 9,235,476 B2

9

sion to delete specific object versions in the buckets in which
itis stored (e.g., using a delete type operation that specifies its
version-id) can delete it. This API may further guarantee that
a store type operation will never overwrite an existing object
in a bucket. FIG. 1 is a flow diagram illustrating a method for
using such an API to store a new data object in a data storage
system that supports versioning, according to one embodi-
ment. As illustrated at 110, the method may include initiating
a PUT type operation that specifies a user key. For example, a
requester (e.g. a user, user application, or process) may issue
a PUT OBJECT instruction to a shared storage system or
storage service, and that PUT OBJECT instruction may con-
form to an API similar to those described herein. The PUT
OBIJECT instruction may be issued to request that a particular
data objectbe stored in a bucket that is owned by the requester
(e.g., a bucket owned by a user who is a storage service
subscriber), and/or that is currently being accessed. In
response to receiving the request (i.e. via the PUT instruc-
tion), the storage system may assign a version identifier (ver-
sion-id) to the new data object and may store the new data
object in the bucket, as described in more detail below. Note
that in some embodiments, if the requester does not have
permission to modify the contents of the bucket, the storage
system may return an error indication in response to an
attempt to perform this operation (not shown).

As illustrated in this example, if versioning is enabled for
the bucket into which the new data object is to be stored (i.e.
if the versioning state of the target bucket is “enabled”),
shown as the positive exit from 120, the method may include
the storage system generating a new, unique version-id for the
new data object, and assigning that version-id to the new data
object, as in 130. The storage system may then store the new
data object in the target bucket, along with its assigned ver-
sion-id, as in 160.

If versioning is not enabled for the bucket (i.e. if the ver-
sioning state of the bucket is “off” or “suspended”), shown as
the negative exit from 120, the method may include the stor-
age system assigning a special sentinel version-id value to the
new data object, as in 140. The storage system may then store
the new data object in the target bucket, along with its
assigned version-id (the sentinel value), as in 145. As illus-
trated in this example, if the bucket already stores an existing
data object having the same key as the new data object and
that existing data object has the sentinel version-id value,
storing the new data object may include overwriting the exist-
ing data object that has the same key and the sentinel version-
id value.

As illustrated at 170 in FIG. 1, the storage system may
return a response to the requester indicating whether the PUT
operation was successful (i.e. whether the data object was
successfully stored in the target bucket). As illustrated in this
example, the version-id assigned to the data object in
response to the PUT operation may be included in the
response returned to requester. For example, in some embodi-
ments, the assigned version-id may be included in a header
element in the response. Again note that if the versioning state
of'a bucket is “off” or “suspended” at the time that the PUT
operation is issued, the storage system may assign a sentinel
version-id value to the data object being PUT. Note that in
some embodiments, if a requester attempts to specify a ver-
sion-id for a PUT operation, the storage system may return an
error indication (e.g., 405 Method Not Allowed, or similar).

In some embodiments, when an object is stored in a bucket,
metadata about the object may be stored in a data structure
(e.g., a key map) associated with the bucket. This metadata
may indicate the user key, version-id value, and a creation/
modification date. For example, in some such embodiments,

10

15

20

25

30

35

40

45

50

55

60

65

10

when a new object is created, a time stamp corresponding to
the date and time at which the new object is created may be
stored as a creation/modification date for that object in a key
map element associated with the object. If the object is an
implicit object version (e.g., one with the special sentinel
version-id value), the creation/modification date in the key
map element associated with the object may be updated when
(and if) the implicit object version is overwritten by a subse-
quent store operation (e.g., as shown at 145 in FIG. 1).

In various embodiments, data objects stored in the system
may be retrieved using a GET OBJECT operation. This API
may behave the same irrespective of whether versioning is
enabled, off, or suspended for the targeted bucket. In some
embodiments, the requester may need to have permission to
access the object version being retrieved in order to perform
this operation. This may be true even if a version-id is not
specified in the request. In this case the requester may need to
have permission to access the latest object version for the key
specified in the request (i.e. the object version corresponding
to the most recent key/version-id pair in lexicographic order).

FIG. 2 is a flow diagram illustrating a method for retrieving
a stored data object from a data storage system that supports
versioning, according to one embodiment. As illustrated at
210, the method may include a requester (e.g. a user, user
application, or process) initiating a retrieve type operation
that specifies a user key. For example, the requester may issue
a GET OBIJECT instruction to a shared storage system or
storage service, and that GET OBJECT instruction may con-
form to an API similar to those described herein. The GET
OBIJECT instruction may be issued to request that a particular
data object be retrieved from a bucket that is owned by the
requester (e.g., a bucket owned by a user who is a storage
service subscriber), and/or thatis currently being accessed. In
response to receiving the request (i.e. via the GET OBJECT
instruction), the storage system may return the data object
specified in the request, as described in more detail below.

As illustrated in this example, if the GET OBJECT instruc-
tion does not specify a version-id, shown as the negative exit
from 220, the method may include the storage system deter-
mining the latest version of the data object having the speci-
fied user key (e.g., using a FIND NEAREST operation), as in
225, and assigning its version-id as the specified version-id
for the GET OBJECT instruction. Note that in some cases the
data object version that is determined to be the latest version
by the operation illustrated at 225 may not be latest version of
the object by the time one or more of the subsequent opera-
tions illustrated in FIG. 2 are performed. However, the data
object version that was determined to be the latest version at
225 may be the target of the GET OBJECT operation for the
remainder of the GET OBJECT process illustrated in FIG. 2.

As illustrated in this example, the method may include
determining whether the specified version is a delete marker,
as in 230. If so, shown as the positive exit from 230, the
storage system may return an error indication to the requester,
asin 270. Ifthe specified version is not a delete marker, shown
as the negative exit from 230, the method may include the
storage system determining whether the requester has per-
mission to access (i.e. to view and/or retrieve) the specified
version, as in 240. If not, shown as the negative exit from 240,
the storage system may return an error indication to the
requester, as in 270. If the requester has permission to access
the specified version, shown as the positive exit from 240, the
method may include the storage system returning the stored
data object that has the specified user key and the specified
version-id, as in 250. Note that the error indication returned if
the requested version is a delete marker may be different than
the error indication returned if the requester does not have

US 9,235,476 B2

11

permission to access the specified version, in some embodi-
ments. Note also that if the requested object version does not
exist (not shown), yet another error indication may be
returned. For example, in some embodiments, each error
indication returned by the storage system may include a text
string describing the applicable error condition(s). In some
embodiments, the requester may only be able to learn about
the existence of delete markers if the requester has permission
to access delete markers the target bucket or to list all object
versions in the target bucket. In this case, the error indication
may include an indication (e.g., in the header) that the speci-
fied version is a delete marker. Again note that the GET
OBIJECT instruction may behave the same whether the cur-
rent versioning state of the targeted bucket is “enabled”,
“oft”, or “suspended” at the time that the GET OBJECT
instruction is issued, in some embodiments.

In some embodiments, a copy type operation may behave
like a retrieve type operation followed by a store type opera-
tion, and may behave in the same way that the retrieve and
store type operations behave with respect to the current (and/
or past) versioning state of a targeted bucket. For example, a
request to perform a COPY OBJECT operation may include
a specific version-id along with the user key (i.e., the
requester may specify a key/version-id pair) as the source
object (i.e. the object to be copied), or may specify only the
user key. If only the user key is specified for the source object,
the storage system may automatically determine the latest
version-id for that key, as described herein. In some embodi-
ments, a request to perform a COPY OBJECT operation may
include a destination user key to be associated with the copy
of the data object when it is stored in the destination bucket.
As with the PUT type operation described above, this API
may cause the storage system to automatically generate a
unique version-id for the destination object if versioning is
enabled for the destination bucket. If versioning is off or
suspended for the destination bucket, the API may cause the
storage system to use the sentinel version-id value for the
copied object. In some embodiments, if the requester
attempts to specify a version-id for the destination object, the
storage system may return an error indication (e.g., 405
Method Not Allowed, or similar).

FIG. 3 is a flow diagram illustrating a method for copying
a data object that is stored in a storage system that supports
versioning, according to one embodiment. As illustrated at
310, the method may include a requester (e.g. a user, user
application, or process) initiating a COPY operation that
specifies a user key. For example, the requester may issue a
COPY OBIECT instruction to a shared storage system or
storage service, and that COPY OBIJECT instruction may
conform to an API similar to those described herein. The
COPY OBIECT instruction may be issued to request that a
particular data object be retrieved from a bucket that is owned
by the requester (e.g., a bucket owned by a user who is a
storage service subscriber), and/or that is currently being
accessed, and that a copy of that data object be stored in the
bucket. In response to receiving the request (i.e. viathe COPY
OBIJECT instruction), the storage system may retrieve the
data object specified in the request from the bucket and store
a new copy of that data object in the same bucket or (if a
different destination bucket is specified) in a different bucket,
as described in more detail below. As noted above, in some
embodiments, a request to perform a COPY OBJECT opera-
tion may include a destination user key to be associated with
the new copy of the data object when it is stored in the
destination bucket. Note that in some embodiments, the
requester may need to have permission to view and/or retrieve
objects in the source object (i.e. the data object to be copied)

10

15

20

25

30

35

40

45

50

55

60

65

12

and permission to modify the contents of the destination
bucket in order to perform this operation. In such embodi-
ments, if the storage system determines that the requester
does not have permission to view or retrieve the specified
version or does not have permission to modify the contents of
the destination bucket, the storage system may return an error
indication (not shown). In addition, in some embodiments,
the storage system may determine whether the specified ver-
sion is a delete marker, and, if so, may return an error indica-
tion (not shown).

As illustrated in this example, if the COPY OBJECT
instruction does not specify a version-id, shown as the nega-
tive exit from 320, the method may include the storage system
determining the latest version of the data object having the
specified user key (e.g., using a FIND NEAREST operation),
asin 325, and assigning its version-id as the specified version-
id for the COPY OBIJECT instruction. Again note that in
some cases the data object version that is determined to be the
latest version by the operation illustrated at 325 may not be
latest version of the object by the time one or more of the
subsequent operations illustrated in FIG. 3 are performed.
However, the data object version that was determined to be
the latest version at 325 may be used as the source of the
COPY OBIJECT operation for the remainder of the COPY
OBIJECT process illustrated in FIG. 3. In this example (as-
suming the requester has permission to view and/or retrieve
the specified version, and the specified version is not a delete
marker), the method may include the storage system making
a copy of the specified version of the data object, as in 330. If
the latest version of the data object is a delete marker, the
method may instead include the storage system returning an
error indication (not shown).

As illustrated at 350, if versioning is enabled for the bucket
into which the copy of'the data object is to be stored (i.e. if the
versioning state of the destination bucket is “enabled”),
shown as the positive exit from 350, the method may include
the storage system generating a new, unique version-id for the
copy of the data object, and assigning that version-id to the
data object copy, as in 360. The storage system may then store
the data object copy in the destination bucket, along with its
assigned version-id, as in 370.

If versioning is not enabled for the destination bucket (i.e.
if the versioning state is “off” or “suspended”), shown as the
negative exit from 350, the method may include the storage
system assigning a sentinel version-id value to the copy of the
data object, as in 355. The storage system may then store the
data object copy in the destination bucket, along with its
assigned version-id (the sentinel value), as in 365. As illus-
trated in this example, if the destination bucket already stores
an existing data object having the same key as the data object
copy and that existing data object has the sentinel version-id
value, storing the new data object in the destination bucket
may overwrite the existing data object that has the same key
and the sentinel version-id value.

As illustrated at 375 in FIG. 3, the storage system may
return a response to the requester indicating whether the
COPY operation was successful (i.e. whether the particular
data object was successfully copied and the data object copy
stored in the destination bucket). As illustrated in this
example, the version-id assigned to the data object copy in
response to the COPY OBJECT instruction may be included
in the response returned to the requester. For example, in
some embodiments, the assigned version-id may be included
in a header element in the response. As illustrated in FIG. 3,
the COPY OBIECT instruction may in some embodiments
behave differently when the current versioning state of the
destination bucket is “enabled” than when the current ver-

US 9,235,476 B2

13

sioning state is “off”, or “suspended” at the time that the
COPY OBIECT instruction is issued, while the current ver-
sioning state of the source bucket may not affect the behavior
of the COPY OBIJECT instruction.

The systems described herein may in some embodiments
support multiple operations for listing the contents of a
bucket. For example, one operation defined by the API (e.g.,
a LIST BUCKET operation) may behave in a manner similar
to that of a corresponding operation in existing storage sys-
tems that do not support data object versioning. Such an API
may be used to list only the versions of stored data objects that
can be retrieved without specifying a version-id for the data
objects. For example, such an API may cause the storage
system to return a list of the latest version of each data object
stored in the bucket unless the latest version of a data object is
a delete marker. In this example, if the latest version of a data
object were a delete marker, no data objects listed in the
response would have the same user key as the delete marker.
In some embodiments, this operation may support prefix
and/or delimiter narrowed listing, or limiting the result set to
a maximum number of keys.

Another operation defined by the API (e.g., a LIST VER-
SIONS operation) may be used to list all of the versions of the
data objects stored in a given bucket, rather than only the
versions of stored data objects that can be retrieved without
specifying a version-id for the data objects. For example, such
an API may cause the storage system to return a list of every
version of each data object stored in the bucket, including any
versions of stored data objects that are delete markers. In this
example, if one of the versions of a data object were a delete
marker, the delete marker would be included in the data
objects listed in the response. As with the GET BUCKET
operation described above, this operation may support prefix
and delimiter narrowed listing, limiting the result set to a
maximum number of keys, and a pagination/marker mecha-
nism.

As noted above, in some embodiments, a data structure
(e.g., a key map) may store metadata about the objects con-
tained in a storage system or in a bucket thereof. For example,
in some embodiments, a key map for a particular bucket may
include a collection of inodes, each of which represents an
object stored in the bucket. Each inode may include metadata
associated with the object it represents, and this metadata may
indicate (e.g., directly or through any of various encoding
schemes) its user key, version-id, and creation/modification
date. The order of the inodes in a key map may reflect a total
ordering for the objects in a bucket, e.g., based on the user
keys and version-ids of the objects in the bucket. For example,
in some embodiments, the inodes may be sorted first by user
key (e.g., lexicographically), and then by version-id. In some
such embodiments, the object versions returned by a LIST
VERSIONS operation may be ordered first in ascending lexi-
cographic order of their keys (e.g., in alphabetical order, A to
7)), and then in descending order of their creation dates (i.e.
with the latest version listed first). Several examples of key
maps are illustrated in FIGS. 12A-12C, and described in more
detail below. The use of key maps in determining the latest
version of an object is also described in more detail below.

As noted above, both object versions with data and object
versions that are delete markers may be included in the list of
objects returned to the requester. In some embodiments, each
entry in the returned list of objects may include an indication
of' whether or not it is the latest version for its key. Again note
that the operations that retrieve object data may automatically
fill in the latest version-id for the specified key if no version-id
is specified. Various parameters that may be supported by a
LIST VERSIONS operation include:

5

10

15

20

25

30

35

40

45

50

55

60

65

14

Prefix—If specified, this parameter may limit the
responses to keys that begin with the indicated prefix.
Prefixes may be used to separate the contents of a bucket
into different sets of keys in a manner similar to the way
that a file system uses folders.

Delimiter—If specified, this parameter may cause keys
that contain the same string between the prefix and the
first occurrence of the delimiter to be rolled up into a
single result element in a “common prefixes” collection,
and these rolled-up keys may not be returned elsewhere
in the response.

Max keys—If specified, this parameter may indicate the
maximum number of keys to be included in the result
(e.g., in the body of the response). In some embodi-
ments, if a value of this parameter is not specified in the
request, a default value may be applied by the storage
system.

Key marker—If specified, this parameter may indicate a
point in the bucket at which to begin listing. In various
embodiments, a key marker may be used with or without
a version-id marker.

Version-id marker—If this parameter is specified, it may,
in combination with a key marker, indicate the point in
the bucket at which to begin listing.

In some embodiments, if the number of objects that could
be returned for a LIST VERSIONS request exceeds the num-
ber specified by the max keys parameter (e.g., 1000), the
LIST VERSIONS response may indicate that the returned list
has been truncated. In some embodiments, the LIST VER-
SIONS response may include an indication of the next key
marker and next version-id marker, and these may be included
in a subsequent LIST VERSIONS request (e.g., the next
request) in order to continue listing the remaining object
versions in the target bucket.

FIG. 4 is a flow diagram illustrating a method for listing all
of'the versions of the data objects stored in a given bucket in
a storage system that supports versioning, according to one
embodiment. As illustrated at 410, the method may include a
requester (e.g. a user, user application, or process) initiating
an operation to list all data object versions in a bucket. For
example, the requester may issue a LIST VERSIONS instruc-
tion to a shared storage system or storage service, and that
LIST VERSIONS instruction may conform to an API similar
to those described herein. The LIST VERSIONS instruction
may beissued to request a list of all data object versions stored
in a bucket that is owned by the requester (e.g., a bucket
owned by a user who is a storage service subscriber), and/or
that is currently being accessed. In response to receiving the
request (i.e. viathe LIST VERSIONS instruction), the storage
system may return a list of all data object versions stored in
the bucket (including delete markers), as described in more
detail below.

As illustrated in this example, the method may include the
storage system determining whether the requester has per-
mission to access (i.e. view and/or retrieve) the objects in the
target bucket, as in 420. If not, shown as the negative exit from
420, the method may include the storage system returning an
error indication, as in 425. If the requester has permission to
access the objects in the target bucket, shown as the positive
exit from 420, the storage system may respond to the request
by determining the list of data object versions to be returned.
For example, if the LIST VERSIONS instruction specifies a
prefix, shown as the positive exit from 430, the storage system
may limit the responses to data objects with user keys begin-
ning with the specified prefix, as in 435. Similarly, if the LIST
VERSIONS instruction specifies a delimiter, shown as the
positive exit from 440, the storage system may cause data

US 9,235,476 B2

15

objects with keys having the same string between any speci-
fied prefix and the delimiter to be rolled up into a single result
element, as in 445.

Asillustrated in FIG. 4, ifthe LIST VERSIONS instruction
specifies a key marker and/or version-id marker, shown as the
positive exit from 450, these parameters may specify at what
point in the lexicographical ordering of the stored objects the
storage system is to begin listing the data object versions in
the target bucket, as in 455. In some embodiments, if a key
marker and a version-id marker are specified, the list returned
by the storage system may only include objects that come
after the specified (key marker, version-id) pair in the defined
ordering. For example, if the request specifies a key marker
value of “key2”, the response may begin with an entry for
which the key comes lexicographically after the specified key
marker (e.g., “key3”). In another example, if the request
specifies a values for a key marker of “key2” and a version-id
marker of “11223344”, the response may begin with the first
entry that comes after the data object corresponding to the
specified key/version-id pair in lexicographic order. Note that
the version-id marker may be specified as the sentinel value.
In this case, the response may begin with the first entry that
comes after an implicit version of a data object having the
specified key. In some embodiments, if a key marker is speci-
fied, but a version-id marker is not specified, the list returned
by the storage system may only include objects for which the
corresponding key comes at or after the specified key marker
(according to the defined ordering). As noted above, if the
LIST VERSIONS instruction does not specify a value for
max-keys, shown as the negative exit from 460, the storage
system may use a default value for max-keys when returning
the list of data object versions in the target bucket, as in 465.
If the storage system determines that there are no more data
object versions in the bucket meeting the criteria specified by
the LIST VERSIONS instruction than the number specified
by max-keys, shown as the negative exit from 470, the method
may include the storage system returning all of the results
meeting the specified criteria, as in 480.

If the storage system determines that there are more data
object versions in the bucket that meet the criteria specified by
the LIST VERSIONS instruction than the number specified
by max-keys, shown as the positive exit from 470, the method
may include the storage system returning only the number of
results equal to the value of max-keys, as in 475. Note that in
some embodiments, if not all of the results can be returned
due to the max-keys limit, the storage system may return
continuation information (e.g., a key marker and/or version-
id marker) reflecting the point at which the results were trun-
cated. In some embodiments, a subsequent LIST VERSIONS
operation may be invoked to retrieve additional results using
that continuation information. For example, the values of
some of the parameters described above may be specified in a
subsequent LIST VERSIONS operation such that the results
of the subsequent LIST VERSIONS operation include the
next max-keys data object versions that would have immedi-
ately followed the results returned for the first LIST VER-
SIONS operation had no maximum number of results been
enforced. In various embodiments, any number of such LIST
VERSIONS operations may be invoked in order to list all of
the data object versions in the target bucket.

In some embodiments, if the requester attempts to specify
aversion-id or user key for a LIST VERSIONS operation, the
storage system may return an error indication (e.g., 405
Method Not Allowed, or similar). Note that the storage sys-
tems described herein may not support a distinct listing type
operation that returns only the versions of a particular data
object (i.e. all of the data object versions having a specified

40

45

55

60

16

user key). However, in some embodiments, the parameters
described herein for narrowing the list of responses to a LIST
VERSIONS request may be used to limit responses in differ-
ent ways. For example, the prefix parameter may be used to
limit responses to data objects whose user keys begin with the
specified prefix. If the prefix value specified in a LIST VER-
SIONS request corresponds to a user key value, and if there
are no other user key values that being with that prefix value,
the responses may be limited to the data object versions for a
specific object.

The systems and methods described herein for supporting
object versioning may allow efficient logical deletion of a
stored object, using the delete marker described above. In
some embodiments, a DELETE KEY operation may behave
differently from the DELETE VERSION API described
herein, in that a version-id is not specified for a DELETE
KEY operation. For example, if the versioning state of the
targeted bucket is enabled when a DELETE KEY operation is
issued, this API may cause the storage system to create a new
delete marker as the latest object version for the specified user
key, and may assign a unique version-id to the delete marker.
As noted above, the delete marker may not store any object
data (i.e. the contents of the delete marker object may be
empty), but the delete marker object may include metadata,
such as that described herein. In this example, subsequent
attempts to retrieve an object having the specified key without
specifying a version-id (e.g. using GET OBJECT, GET ACL,
or COPY) may return an error indication (e.g., 404 Object
Not Found, or similar). Note, however, that in this case, the
storage system may not have actually deleted any data
objects, or the contents thereof, and the data object versions
previously stored in the bucket may be addressable (and/or
their contents accessible) using retrieval operations that
specify their version-ids. Note that in some embodiments, the
requester may need to have permission to modify the contents
of the target bucket and/or permission to delete objects (or
objects with the specified user key) in the target bucket in
order to perform a DELETE KEY operation.

FIG. 5 is a flow diagram illustrating a method for deleting
a user key in a storage system that supports versioning,
according to one embodiment. As illustrated at 510, the
method may include a requester (e.g. a user, user application,
or process) initiating a delete type operation that specifies a
user key, but that does not specify a version-id. For example,
the requester may issue a DELETE KEY instruction to a
shared storage system or storage service, and that DELETE
KEY instruction may conform to an API similar to those
described herein. The DELETE KEY instruction may be
issued to request that a user key be deleted from a bucket that
is owned by the requester (e.g., a bucket owned by a user who
is a storage service subscriber), and/or that is currently being
accessed. As described in more detail below, in response to
receiving the request (i.e. via the DELETE KEY instruction),
the storage system may logically delete the specified key from
the bucket, and may or may not actually delete a data object or
its contents from the target bucket.

As illustrated at 520, the method may include the storage
system determining whether the requester has permission to
delete objects that are stored in the target bucket. If not, shown
as the negative exit from 520, the method may include the
storage system returning an indication of an error to the
requester, as in 525. If the requester has permission to delete
objects that are stored in the target bucket, shown as the
positive exit from 520, and if versioning has never been
enabled on the bucket (e.g., if the current versioning state is
“off” and is has never been “enabled”), shown as the negative
exit from 530, the method may include the storage system

US 9,235,476 B2

17

deleting a version of a stored data object having the user key
specified in the request and the sentinel version-id value, if
such a version exists. In this case, actual object data (includ-
ing the content stored in the data object) may be deleted, as in
550. As illustrated in this example, if the bucket’s versioning
state is currently “enabled”, shown as the positive exit from
530 and the positive exit from 535, the method may include
the storage system generating a new delete marker (with a
new, unique version-id) as the latest version for the specified
key, as in 540. As illustrated in this example, in this case, no
actual object data is deleted. On the other hand, if the version-
ing state of the bucket is “suspended”, shown as the positive
exit from 530 and the negative exit from 535, the method may
include the storage system deleting the contents of a previ-
ously stored object having the specified key and the sentinel
version-id value (if any exists), as in 560. The method may
also include the storage system marking a previously stored
object having the specified key and the sentinel version-id
value (if any exists) as a delete marker, or (if none exists)
generating a new delete marker (with the sentinel version-id
value), as in 570. The delete marker may then become the
latest version for the specified key. In some embodiments,
marking a previously stored object as a delete marker may
involve modifying metadata associated with and/or stored in
the object to designate the object as a delete marker.

Note that in some embodiments, more than one delete
marker object may be stored in the bucket for a given key. For
example, if a delete operation is requested for a given key
after a delete marker has already been created for that key,
another delete marker (with another unique version-id) may
be created for that key. In such embodiments, two or more
delete markers may be created back-to-back (i.e. as adjacent
object versions in the sequential ordering of objects with the
given key), or delete markers may be stored in the bucket in
multiple arbitrary positions within the sequential ordering of
objects with the given key. For example, if two delete opera-
tions specitying the same key are performed (and versioning
is enabled) without performing any store operations specify-
ing that key between them, two back-to-back delete markers
may be created in the bucket. If one or more store operations
for a given key are performed between two delete operations
specifying that key (and versioning is enabled), the delete
markers and newly stored object versions may be interspersed
within the sequential ordering of objects with that key.

As previously noted, a different operation, e.g., a DELETE
VERSION operation defined by the API, may in some
embodiments be used to permanently delete a version of a
stored data object. In such embodiments, this API may pro-
vide the only way to permanently delete object versions that
are protected by versioning, while objects having a sentinel
version-id value may be overwritten and/or deleted in other
ways. Since this API facilitates the irreversible, permanent
deletion of data, it may be a privileged operation that can only
be performed by the owner of the bucket containing the data
object version targeted for deletion and/or by another privi-
leged user to whom permission to permanently delete a ver-
sion of a stored data objecthas been granted. In some embodi-
ments, as long as a user/subscriber is not acting as the bucket
owner or as a privileged user, the user/subscriber cannot
irreversibly delete the data stored in a bucket. Note that this
DELETE VERSION operation is different from the DELETE
KEY operation described above in that a version-id must be
specified for the DELETE VERSION operation. As noted
above, in some embodiments, the requester may need to have
permission to modify the contents of the target bucket, to have
permission to delete the specified object version, and/or to be

10

15

20

25

30

35

40

45

50

55

60

65

18
acting as the bucket owner or as a privileged user in order to
perform a DELETE VERSION operation.

FIG. 6 is a flow diagram illustrating a method for deleting
a specific version of a data object stored in a storage system
that supports versioning, according to one embodiment. As
illustrated at 610, the method may include a requester (e.g. a
user, user application, or process) initiating a delete type
operation that specifies a user key and a version-id. For
example, the requester may issue a DELETE VERSION
instruction to a shared storage system or storage service, and
that DELETE VERSION instruction may conform to an API
similar to those described herein. The DELETE VERSION
instruction may be issued to request that a specified version of
a data object be deleted from a bucket that is owned by the
requester (e.g., a bucket owned by a user who is a storage
service subscriber), and/or that is currently being accessed.
As described in more detail below, in response to receiving
the request (i.e. via the DELETE VERSION instruction), the
storage system may logically delete the specified key from the
bucket, but may or may not actually delete any object data
(e.g., the content of any stored data objects) from the target
bucket.

As illustrated at 620, the method may include the storage
system determining whether the requester has permission to
delete specific versions of objects stored in the target bucket.
If not, shown as the negative exit from 620, the method may
include the storage system returning an indication of an error
to the requester, as in 630. If the requester has permission to
delete specific versions of objects stored in the target bucket,
shown as the positive exit from 620, the method may include
the storage system deleting the object data with the specified
key and version-id, as in 640. As illustrated in this example, in
this case, actual object data is deleted.

As illustrated in this example, the method may include the
storage system returning a response (e.g., to the requester)
indicating that the data object has been deleted, as in 645. If
the deleted version was a delete marker, shown as the positive
exit from 650, the response may include an indication that the
deleted version was a delete marker, as in 655. If the deleted
version was not a delete maker, no such indication is included
in the response, as shown in 660. Note that in some embodi-
ments, this API may behave the same regardless of whether
the current versioning state of the targeted bucket is
“enabled”, “oft” or “suspended”. Note also, that in some
embodiments, a bucket cannot be deleted unless all of the
object versions stored in the bucket have been permanently
deleted using the DELETE VERSION APIL.

As described herein, the versioning state of a bucket may
have different implications for each API performed on that
bucket and/or for objects stored within that bucket. In some
embodiments, the versioning state of'a bucket can be in one of
three possible states: off, enabled, and suspended. As previ-
ously noted, in some embodiments, the versioning state of
newly created buckets may be the off state, by default. In
some embodiments, once the bucket versioning state is either
enabled or suspended, the versioning state may never be
reverted to the off state. In some embodiments, the storage
systems described herein may provide APIs to set and/or
retrieve the value of a bucket’s versioning state. In such
embodiments, a requester may need have to have a special
type of permission to retrieve the versioning state of a bucket,
and may need to have the same or a different type of permis-
sion on the bucket (and/or be acting as the bucket owner) in
order to set or change its versioning state.

FIG. 7 is a flow diagram illustrating a method for changing
the versioning state of a bucket in a storage system that
supports versioning, and some of the effects of such a change,

US 9,235,476 B2

19

according to one embodiment. As illustrated at 710 in FIG. 7,
the method may include the storage system creating a new
bucket, for which the initial versioning state may be “off”. As
noted above, in some embodiments, the default versioning
state for newly created buckets may be “off”” while in other
embodiments, the default versioning state may be “enabled”,
or a user may be able to specify the versioning state for newly
created buckets. In this example, while versioning is turned
off, a GET type operation on the versioning status of the
bucket (e.g., using a GET VERSIONING instruction) may
return a value indicating that the versioning state is “oft”, as
in 720.

As illustrated at 730, a requester (e.g. a user, user applica-
tion, or process) may initiate a change of the versioning state
using a PUT type operation. For example, the requester may
issue a PUT VERSIONING instruction to a shared storage
system or storage service, and that PUT VERSIONING
instruction may conform to an API similar to those described
herein. In some embodiments, the PUT VERSIONING
instruction, which may be used to specify a new versioning
state for a bucket, may only be issued by a requester that has
permission to modify the versioning state of the bucket (e.g.,
the bucket owner and/or another privileged user who has
permission to modify the versioning state of the bucket). If the
PUT VERSIONING operation specifies that the versioning
state for the bucket should be toggled from “oft” or “sus-
pended” to “enabled”, shown as the positive exit from 740,
the method may include the storage system changing the
versioning state of the bucket to “enabled”. For example, in
embodiments in which the default versioning state for a
newly created bucket is the “off” state, the PUT VERSION-
ING operation may be used to change the versioning state to
“enabled”. In other words, during a first invocation of the
method illustrated in FIG. 7, the positive exit may be taken
from element 740. On one or more subsequent invocations of
the method illustrated in FIG. 7, the versioning state may be
toggled from “enabled” to “suspended” or (subsequently)
from “suspended” to “enabled” by alternating between the
positive and negative exits from element 740 on alternate
invocations. Once the versioning state of the bucket has been
changed to “enabled”, any subsequent GET VERSIONING
operations on the bucket versioning status may return a value
indicating that the versioning state is “enabled”, as in 770,
until or unless another change in the versioning state is
requested. As illustrated in FIG. 7, in some embodiments a
requester may only be able to view the versioning state of a
bucket if the requester has permission to view the versioning
state of the bucket.

As illustrated in FIG. 7, if any additional versioning state
changes are requested, shown as the positive exit from 780,
the method may include repeating the operations illustrated in
730-780 for the requested changes. Otherwise, shown as the
negative exit from 780, the versioning state may not change,
as in 790. If the PUT VERSIONING operation does not
specify that the versioning state of the bucket should be
toggled from “off” to “enabled” shown as the negative exit
from 740, the PUT VERSIONING operation may specify that
the versioning state of the bucket should be toggled from
“enabled” to “suspended”, as in 750. In the example
described above, on the second invocation (and subsequent
alternating invocations) of the method illustrated in FIG. 7,
the negative exit from 740 may be taken. In other words, the
PUT VERSIONING operations of these invocations may be
used to toggle the versioning state of the bucket from
“enabled” to “suspended”. If the PUT VERSIONING opera-
tion specifies that the versioning state of the bucket should be
toggled from “enabled” to “suspended”, the method may

20

30

40

45

55

20

include the storage system changing the versioning state of
the bucket to “suspended”. Once the versioning state of the
bucket has been changed to “suspended”, any subsequent
GET VERSIONING operations on the bucket versioning sta-
tus may return a value indicating that the versioning state is
“suspended”, as in 760, until or unless another change in the
versioning state is requested. As illustrated in FIG. 7, in some
embodiments a requester may only be able to view the ver-
sioning state of a bucket if the requester has permission to
view the versioning state of the bucket.

Again, if any additional versioning state changes are
requested, shown as the positive exit from 780, the method
may include repeating the operations illustrated in 730-780
for the requested changes. Otherwise, shown as the negative
exit from 780, the versioning state may not change, as in 790.
As illustrated in this example, in some embodiments, the
versioning state of a bucket cannot be changed to the “off”
state from either the “enabled” or the “suspended” state.

As previously noted, in some embodiments enabling and/
or suspending versioning may be performed at the bucket
level. In other embodiments, the versioning feature may be
enabled and/or suspended for all of the buckets in a storage
system (e.g., by a privileged user), or on an owner, content
type, or other basis. Note again that enabling versioning on a
bucket may not change anything about the objects already
stored in the bucket, including their version-ids (whose values
may all be the sentinel value), their contents, and their per-
missions, but after versioning has been enabled for the bucket,
all objects added to it may be assigned a unique version-id. In
some embodiments, these unique version-ids may be ran-
domly generated. In some embodiments, they may be Uni-
code, UTF-8 encoded, URL-ready, opaque strings of no more
than a pre-defined length. For example, in some embodiments
version-ids may be at most 1024 bytes long, although much
shorter version-ids are used in the examples described herein.
Note that in some embodiments, version-ids may only be
assigned by the storage system itself, and they may not be
editable. In some embodiments, the GET VERSIONING API
may behave the same whether the current versioning state of
the targeted bucket is “enabled”, “off”, or “suspended”, i.e. it
may always return the versioning state, regardless of'its value.
By contrast, in some embodiments, the PUT VERSIONING
API may behave differently depending on whether the current
versioning state of the targeted bucket is “enabled”, “oft”, or
“suspended”. For example, in some embodiments the ver-
sioning state of a bucket may be changed from “off” to
“enabled”, from “enabled” to “suspended”, or from “sus-
pended” to “enabled”, but it may not be changed from
“enabled” or “suspended” to “off”. In such embodiments, in
response to an invalid change in the versioning state, the
system may return an error indication. In various embodi-
ments, the versioning state of a bucket may be changed in
constant time (i.e. independent of the number of objects
stored in the bucket or whether any or all of them include
unique version-ids).

In some embodiments, every stored object version may
have its own access control list (ACL). For example, in some
embodiments, a user may specify an ACL for an object when
writing the object to the storage system, and/or may modify
the ACL for the object at a later time. In such embodiments,
the system may provide APIs by which a user can GET and/or
PUT an ACL for a specific object version by specifying a key
and a version-id in a request to do so. In some embodiments,
if a version-id is not specified in a GET ACL request, the
storage system may retrieve the ACL for the latest version of
the data object having the key specified in the request. Simi-
larly, if a version-id is not specified in a PUT ACL request, the

US 9,235,476 B2

21

storage system may set the ACL for the latest version of the
data object having the key specified in the request. In some
embodiments, the GET ACL and PUT ACL APIs may behave
the same irrespective of the current versioning state of the
targeted bucket. In some embodiments, a requester may need
to have permission to view or retrieve an object (e.g., accord-
ing to the applicable access control policy, or ACP) to perform
a GET ACL operation on the object, and may need to have
permission to modify an object (according to the ACP) to
perform a PUT ACL operation on the object, as described
below. Various authentication mechanisms may be used to
ensure that data is kept secure from unauthorized access,
according to some embodiments.

FIG. 81s aflow diagram illustrating a method for adding (or
modifying) an access control list (ACL) to an object in a
storage system that supports versioning, according to one
embodiment. As illustrated at 810, the method may include a
requester (e.g. a user, user application, or process) initiating a
PUT ACL operation that specifies a user key. For example, the
requester may issue a PUT ACL instruction to a shared stor-
age system or storage service, and that PUT ACL instruction
may conform to an API similar to those described herein. The
PUT ACL instruction may be issued to request that an access
control list be added to a stored object having the specified
user key.

As illustrated in this example, if the PUT ACL instruction
does not specify a version-id, shown as the negative exit from
820, the method may include the storage system determining
the latest version of the data object (e.g., using a FIND
NEAREST operation), as in 825, and assigning its version-id
as the specified version-id for the PUT ACL instruction.
Again note that in some cases the data object version that is
determined to be the latest version by the operation illustrated
at 825 may not be latest version of the object by the time one
or more of the subsequent operations illustrated in FIG. 8 are
performed. However, the data object version that was deter-
mined to be the latest version at 825 may be the target of the
PUT ACL operation for the remainder of the PUT ACL pro-
cess illustrated in FIG. 8. As illustrated in FIG. 8, the method
may include determining whether the specified version is a
delete marker, as in 830. If so, shown as the positive exit from
830, the storage system may return an error indication to the
requester, as in 860. If the specified version is not a delete
marker, shown as the negative exit from 830, the method may
include the storage system determining whether the requester
has permission to add or modify an access control policy for
the specified version of the object (e.g., permission to add a
new access control policy or overwrite an existing access
control policy for the specified version), as in 840. If the
requester has permission to add or modify an access control
list for the specified version of the object, shown as the posi-
tive exit from 840, the method may include the storage system
setting (or overwriting) the ACL for the specified version of
the data object, as in 850. If the requester does not have
permission to add or modify an access control list for the
specified version of the object, shown as the negative exit
from 840, the method may include the storage system return-
ing an error indication, as in 860. Note that in some embodi-
ments, the PUT ACL API may behave the same regardless of
whether the current versioning state of the targeted bucket is
“enabled”, “oft”, or “suspended”.

FIG.9 is a flow diagram illustrating a method for retrieving
an access control list (ACL) of an object from a storage
system that supports versioning, according to one embodi-
ment. As illustrated at 910, the method may include a
requester (e.g. a user, user application, or process) initiating a
GET ACL operation that specifies a user key. For example, the

10

15

20

25

30

35

40

45

50

55

60

65

22

requester may issue a GET ACL instruction to a shared stor-
age system or storage service, and that GET ACL instruction
may conform to an API similar to those described herein. The
GET ACL instruction may be issued to request an access
control list for a stored object having the specified user key.

As illustrated in this example, if the GET ACL operation
does not specify a version-id, shown as the negative exit from
920, the method may include the storage system determining
the latest version of the data object (e.g., using a FIND
NEAREST operation), as in 925, and assigning its version-id
as the specified version-id for the instruction. Again note that
in some cases the data object version that is determined to be
the latest version by the operation illustrated at 925 may not
be latest version of the object by the time one or more of the
subsequent operations illustrated in FIG. 9 are performed.
However, the data object version that was determined to be
the latest version at 925 may be the target of the GET ACL
operation for the remainder of the GET ACL process illus-
trated in FIG. 9. As illustrated in this example, the method
may include the storage system determining whether the
specified version of the object is a delete marker, as in 930. If
the specified version of the object is a delete marker, shown as
the positive exit from 930, the method may include the stor-
age system returning an error indication, as in 960. If the
specified version of the object is not a delete marker, shown as
the negative exit from 930, the method may include the stor-
age system determining whether the requester has permission
to view and/or retrieve an access control list for the specified
version of the object, as in 940. If the requester has permission
to view and/or retrieve an access control list for the specified
version of the object, shown as the positive exit from 940, the
method may include the storage system returning the ACL for
the specified version of the data object, as in 950. If the
requester does not have permission to view and/or retrieve an
access control list for the specified version of the object,
shown as the negative exit from 940, the method may include
the storage system returning an error indication, as in 960. In
some embodiments, the GET ACL operation may behave the
same regardless of whether the current versioning state of the
targeted bucket is “enabled”, “oft”, or “suspended”.

Note that in various embodiments, different ones of the
conditions that lead to the return of an error indication, such
as those illustrated in FIGS. 1-9 and described above, may
cause different error indications to be returned. In other
words, for each of the different conditions that may lead to the
return of an error condition, the response may include a
different error code and/or text string indicative of the par-
ticular condition that caused the error indication. In some
embodiments, such an indication may be included in the
header of a response returned by the storage system, i.e. in
response to an operation request issued by a user, user appli-
cation, or process.

FIGS. 10A-10I illustrate the effects of various operations
on a bucket in a storage system that supports versioning,
according to one embodiment. As previously noted, in some
embodiments, when an object is stored in a versioning-en-
abled bucket, the old version may not be overwritten. This is
illustrated in FIGS. 10A and 10B. For example, FIG. 10A
illustrates a PUT OBJECT operation in which a new version
of'an object having the key “photo.gif” is stored in a version-
ing-enabled bucket 1020 that already contains two objects
with the same name (i.e. with the same user key). In this
example, the original object (i.e. the object having the ver-
sion-id value shown as ID=8930287) and another version of
the object (i.e. the object having the version-id value shown as
1D=4857693) remain in bucket 1020 following the PUT
OBIJECT operation. In response to the PUT OBJECT opera-

US 9,235,476 B2

23

tion (which does not specify a version-id), the system gener-
ates a new version identifier (shown as 1D=2121212), and
adds the newer version of the object “photo.gif” (illustrated in
FIG. 10A as object 1010) to bucket 1020. The result of this
PUT OBJECT operation is illustrated in FIG. 10B, which
depicts bucket 1020 storing all three of these versions of the
object “photo.gif’. Note that the functionality described
herein for generating new version identifiers for objects when
they are stored in the system may prevent users from acciden-
tally overwriting or deleting objects, and may also provide
users the opportunity to retrieve a previous version of an
object.

As previously noted, in some embodiments, when a user
key is deleted from a versioning-enabled bucket (i.e. using a
DELETE KEY operation), all versions of the object may
remain in the bucket, and a delete marker object may be
inserted in the bucket. This is illustrated in FIGS. 10C-10D.
For example, FIG. 10C illustrates a DELETE KEY operation
targeting an object stored in versioning-enabled bucket 1020
that has a user key “photo.gif”. In this example, since the
DELETE KEY operation does not specify a version-id for the
object to be deleted, no objects are actually deleted from
bucket 1020. Instead, in response to the DELETE KEY
operation, the system generates a new version-d value (shown
as ID=111111), and inserts a new delete marker object with
that version-id in bucket 1020. The result of this DELETE
KEY operation is illustrated in FIG. 10D, which depicts
bucket 1020 storing all three of the previous versions of the
object “photo.gif” and the newly added delete marker for the
“photo.gif” user key. As illustrated in this example, the delete
marker itself becomes the latest version of the data object.

As previously noted, in some embodiments, by default, a
GET OBIECT operation may retrieve and return the latest
version (i.e. the most recently stored version) of an object
having a specified user key. In such embodiments, in response
to a GET OBJECT operation specifying a user key but not a
version-id, the storage system may return an error indication
if the latest version of the object is a delete marker. This is
illustrated in FIG. 10E. In this example, a GET OBJECT
operation targeting versioning-enabled bucket 1020 and
specifying a user key “photo.gif” returns a “404 No Object
Found” error indication, since the latest version of an object
having the key “photo.gif” is a delete marker. In this example,
there is no change in the contents of bucket 1020 as a result of
this GET OBJECT operation.

In some embodiments, however, even if the latest version
of'an object is a delete marker object, an older version of that
object may be retrieved using a GET OBJECT operation that
specifies the version-id of the older version. This is illustrated
in FIGS. 10F and 10G. In this example, FIG. 10F illustrates a
GET OBIJECT operation targeting versioning-enabled bucket
1020 that specifies user key “photo.gif” and version-id
8930287. In this example, even though there is a delete
marker associated with user key “photo.gif” the specified
version of the object may be retrieve and returned by the
storage system. The result of this GET OBJECT operation is
illustrated in FIG. 10G, which depicts that the data object
having key “photo.gif” and version-id 8930287 is returned to
the requester. This example illustrates that in response to a
GET OBJECT operation that specifies an object version, the
storage system may return that object version even if it is not
the latest version of that object, and even if the latest version
of that object (or any more recent version of that object) is a
delete marker object. Note that, as in the previous example,
there is no change in the contents of bucket 1020 as a result of
this GET OBJECT operation.

25

40

45

50

24

As previously noted, in some embodiments, a stored data
object may be permanently deleted using a delete type opera-
tion that specifies the particular version to be deleted. In some
such embodiments, only a user with special privileges (e.g.,
the owner of the bucket, or another user to whom permission
to permanently delete objects in the bucket has been granted)
may be able to permanently delete a version of an object
stored in the bucket. This is illustrated in FIGS. 10H-101. In
this example, FIG. 10H illustrates a DELETE VERSION
operation targeting versioning-enabled bucket 1020 that
specifies both the user key “photo.gif” and the version-id
4857693. As illustrated in this example, in response to this
DELETE VERSION operation, the storage system may per-
manently deletes the specified version of the object from
bucket 1020 without inserting a delete marker object. The
result of this DELETE VERSION operation is illustrated in
FIG. 101, which that the data object having key “photo.gif”
and version-id 4857693 has been removed from bucket 1020,
and that no additional delete marker object has been added.
Asillustrated in this example, any other versions of this object
may remain stored in bucket 1020 following this DELETE
VERSION operation.

As described herein, some of the operations targeting a
bucket, or objects therein, may behave differently depending
onwhether a versioning feature supported in the system is off,
enabled, or suspended. FIGS. 11A-11M illustrate the effects
of various operations on a bucket when such a versioning
feature is off, enabled, or suspended, according to one
embodiment. For example, FIG. 11 A illustrates a PUT
OBIJECT operation in which an object 1110 having the user
key “photo.gif” is stored in a bucket 1120 that does not
contain any other objects with the same name (i.e. with the
same user key), and for which a versioning feature is off (and
has never been on). Note that in this example, bucket 1120
may contain objects having other user keys (not shown). In
this example, as a result of the PUT OBIJECT operation, an
object having the specified user key (“photo.gif”) and a ver-
sion-id with a special sentinel value is stored in bucket 1120,
as shown in FIG. 11B. FIG. 11C illustrates a second PUT
OBIJECT operation in which an object 1111, which specifies
the same user key as object 1110 (“photo.gif™), is stored in
bucket 1120. In this example, since the versioning feature is
off, this second PUT OBJECT operation causes the data of
object 1110 that was stored in bucket 1120 to be overwritten
by the data of object 1111. This is illustrated in FIG. 11D,
which illustrates a single object having the specified user key
(“photo.gif”) and a version-id with the special sentinel value.

As described above, when a versioning feature supported
by a storage system is off, a delete type operation may actu-
ally delete data from a bucket in the storage system. FIG. 11E
illustrates a DELETE KEY operation on bucket 1120 while
the versioning feature is still off. In this example, the
DELETE KEY operation specifies a user key (“photo.gif”)
but does not specify a version-id. In response to this DELETE
KEY operation, the object stored in bucket 1120 that has the
specified user key (“photo.gif”) and a version-id having the
special sentinel value is deleted. The result of this operation is
illustrated in FIG. 11F, which illustrates that bucket 1120 no
longer contains any objects having the user key “photo.gif”.

As described herein, if a versioning feature is initially off
for aparticular bucket, but is later enabled, various operations
targeting that bucket may behave differently than they did
before the versioning feature was enabled. In the example
illustrated in FIG. 11G, it is assumed that the versioning
feature for bucket 1125 was off when one or more PUT
OBIJECT operations for objects having a user key “photo.gif”
were performed. This resulted in a data object being stored in

US 9,235,476 B2

25

bucket 1125 having the user key “photo.gif” and a version-id
with a special sentinel value, and this object may have been
overwritten by subsequent PUT OBJECT operations that also
specified the user key “photo.gif” while the versioning fea-
ture was off. FIG. 11G illustrates an operation to store an
object 1112 that has the user key “photo.gif”, and that is
performed on bucket 1125 after the versioning feature has
been enabled for bucket 1125. As a result of this PUT
OBIJECT operation, anew object version is created and stored
in bucket 1125, as illustrated in FIG. 11H. This new object
version has the user key “photo.gif”, and a new, unique ver-
sion-id value (8930287) that was created by the system in
response to the PUT OBJECT operation. Note that a subse-
quent GET OBJECT operation targeting bucket 1125 and
specifying user key “photo.gif” (but not specifying a version-
id) would return the data of object 1112, since this is the
object having the specified user key that was most recently
stored in bucket 1125.

As described herein, if a versioning feature has been
enabled for a particular bucket, but s later suspended, various
operations targeting that bucket may behave differently than
they did when the versioning feature was off or enabled. In the
example illustrated in FIG. 111, it is assumed that one or more
PUT OBJECT operations targeting bucket 1127 and specify-
ing the user key “photo.gif” were performed while the ver-
sioning feature was off (resulting in the storing and/or over-
writing of an object version with a version-id having a special
sentinel value), and two PUT OBJECT operations targeting
bucket 1127 and specifying the user key “photo.gif” were
performed after the versioning feature was subsequently
enabled (one of which created and stored a new object version
with version-id 8930287, and one of which created and stored
a new object version with version-id 5539052). FIG. 111
illustrates an operation to store an object 1113 that has the
user key “photo.gif”; and that is performed on bucket 1127
after the versioning feature has been suspended for bucket
1127. As a result of this PUT OBIJECT operation, no new
object versions are created or stored in bucket 1127, but the
object version previously stored in bucket 1127 and having
the user key “photo.gif” and a version-id with the special
sentinel value may be overwritten with the data of object
1113. Note that in this example, a subsequent GET OBJECT
operation targeting bucket 1127 and specifying user key
“photo.gif” (but not specifying a version-id) would return the
data of object 1113, since this is the object having the speci-
fied user key that was most recently stored in bucket 1127.

FIG. 11K illustrates a DELETE KEY operation targeting
bucket 1127 following the operations illustrated in FIGS. 111
and 117J, and while the versioning feature is still suspended for
bucket 1127. In this example, the DELETE KEY operation
specifies the user key “photo.gif”, but does not specify a
version-id. In response to this DELETE KEY operation, the
system deletes the data of an object previously stored in
bucket 1127 that has the user key “photo.gif” and a version-id
with the special sentinel value. The system then marks this
object as a delete marker object in bucket 1127. The result of
this DELETE KEY operation is illustrated in FIG. 11L,
which depicts bucket 1127 storing two of the previously
stored versions of the object “photo.gif” (those stored while
versioning was enabled) and the newly marked delete marker
for the “photo.gif” user key. In this example, the delete
marker becomes the latest version of the data object.

As previously noted, in some embodiments, by default, a
GET OBIECT operation may retrieve and return the latest
version of an object having a specified user key (i.e. the
version with the most recently stored data). In such embodi-
ments, in response to a GET OBJECT operation specifying a

10

15

20

25

30

35

40

45

50

55

60

65

26

user key but not a version-id, the storage system may return an
error indication if the latest version of the object is a delete
marker. In some embodiments, the behavior of the GET
OBIJECT operation may be the same regardless of the ver-
sioning state of the bucket targeted by the GET OBJECT
operation. This is illustrated in FIG. 11M. In this example, a
GET OBJECT operation performed following the operations
illustrated in FIGS. 11K-11L, which targets bucket 1127 and
specifes a user key “photo.gif” but not a version-id returns a
“404 No Object Found” error indication, since the latest ver-
sion of an object having the key “photo.gif” is the recently
marked delete marker. In this example, there is no change in
the contents of bucket 1127 as a result of this GET OBJECT
operation.

FIGS. 12A-12C illustrate examples of the ordering of the
elements (e.g., inodes) in a key map, according to one
embodiment. In these examples, key map 1200 reflects the
contents of a bucket that includes objects having user keys of
A, B, and C. FIG. 12A illustrates the contents of key map
1200 after three explicit versions of each of these objects have
been stored in the bucket (while versioning was enabled for
the bucket). In this example, the version-id values for these
objects (each of which may comprise a sequencer value and a
unique identifier, in some embodiments) have been simplified
for illustration purposes, and are shown as version-id values
of 2,3, and 4.

As described herein, in some embodiments, the elements in
a key map for a given bucket may be sorted first by user key
(lexicographically), and then by their version-id values. In
embodiments in which the version-id values for each explic-
itly created object version includes a sequencer portion based
on the creation date of the object, sorting key map elements
for explicit object versions by their version-id values effec-
tively places them in order of the creation dates of those
objects (i.e. in reverse chronological order, such that the ele-
ments associated with the most recently stored object ver-
sions appear first in the key map). This sorting scheme is
illustrated in FIG. 12A, in which the three versions of an
object having user key A are sorted in reverse order by ver-
sion-id, and are followed by the three versions of an object
having user key B (again sorted in reverse order by version-
id), and finally the three versions of an object having user key
C (sorted in reverse order by version-id).

As described herein, a FIND NEAREST operation may in
some embodiments be invoked by the storage system to deter-
mine the latest version of an object with a given key, when no
version-id is specified for an operation specifying the given
key. In some embodiments, this FIND NEAREST operation
may search the key map for the target bucket to locate the first
key map element (e.g., inode) having the specified user key. If
all of the elements in the key map having the specified key are
associated with explicit object versions, the first element in
the key map having the specified key may represent the latest
object version with the specified key. Thus, in the example
illustrated in FIG. 12A, a GET OBJECT operation on user
key A would return the data of the object represented by the
first element of the key map (A#2), which is an object having
user key A and a version-id value of 2, since this is the latest
object version with user key A. Similarly, a GET OBJECT
operation on user key B would return the data of the object
represented by the fourth element ofthe key map (B#2), since
this is the latest object version with user key B, and a GET
OBIJECT operation on user key C would return the data of the
object represented by the seventh element of the key map
(C#2), since this is the latest object version with user key C.

FIG. 12B illustrates the contents of key map 1200 after an
additional object version having user key B is stored in the

US 9,235,476 B2

27

bucket associated with key map 1200. Again, it is assumed, in
this example, that versioning is enabled for this bucket at the
time the additional object version is stored. Therefore, the
newly stored object is an explicit object version with user key
B and a newly generated version-id value. As illustrated in
this example, a new element is added to the key map between
the last element representing objects having the user key A
(i.e. the element representing the oldest stored object version
with user key A) and the first element representing a previ-
ously stored version of the object having user key B (i.e. the
element representing the most recently stored version of the
object prior to storing this new object version). In this
example, the new element, shown in the fourth position in key
map 1200, reflects auser key of B, and a simplified version-id
value of 1, although the version-id value may in some
embodiments comprise a sequencer value and a unique iden-
tifier. In the example illustrated in FIG. 12B, a GET OBJECT
operation specifying user key B, but not specifying a version-
id, may return the data of the explicit object version associ-
ated with this new element in key map 1200 (labeled as B#1),
because a FIND NEAREST operation specifying user key B
may correctly identify this element of key map 1200 as the
one representing the latest object version with user key B.
Note that the results of a GET OBJECT operation that speci-
fies user key A or user key C would be no different than in the
example illustrated in FIG. 12A.

In the examples illustrated in FIGS. 12A and 12B, it is
assumed that versioning is enabled for the bucket associated
with key map 1200, and that no objects having user keys A, B,
or C were stored in the bucket prior to versioning being
enabled or while versioning was suspended for the bucket.
Therefore, no object versions stored in the bucket having
these user keys have a version-id value that is a special sen-
tinel value (i.e. a value reflecting that the object was stored
while versioning was off or suspended for the bucket). In the
example illustrated in FIG. 12C, key map 1200 includes an
element representing one or more objects that were stored in
the bucket prior to versioning being enabled or while version-
ing was suspended. This element, shown as the fourth ele-
ment in key map 1200, represents an implicit object version
having a user key B and a sentinel version-id value. In this
example, the implicit object version represented by this ele-
ment in the key map may have been stored (and/or its data
overwritten, as described herein) at any arbitrary time during
which versioning was off or enabled. However, in various
embodiments, the key map element associated with this
implicit object version may appear first in the ordering of
elements associated with objects having user key B. For
example, in some embodiments, the special sentinel value
assigned as the version-id for implicit object versions in the
storage system may be a value that is always numerically
lower than any other valid version-id in the storage system. In
such embodiments, an element representing an implicit ver-
sion of an object with a given user key may always be the first
element in the key map for objects with the given user key. In
some embodiments, the version-id portion of key map ele-
ments representing implicit object versions may be empty
(i.e. it may not contain any value).

In the example illustrated in FIG. 12C, in response to
receiving a GET OBJECT operation specifying user key B,
but not specifying a version-id, the storage system may
invoke a FIND NEAREST operation to determine the latest
object version with user key B. However, because the key map
includes an element representing an implicit object version
with user key B, in this example, it may not be sufficient for
the FIND NEAREST operation to merely identify the first
element in the key map with user key B. For example, while

10

15

20

25

30

35

40

45

50

55

60

65

28

an element representing an implicit object version for a given
key may always appear first in the key map (because the
elements were sorted by their version-ids), this implicit object
version may not contain the most recently stored data for the
given key. Instead, the second element with the given key (i.e.
an element representing the most recently stored explicit
object version with the given key) may represent the object
version that contains the most recently stored data for the
given key. Therefore, in some embodiments, the FIND
NEAREST operation may need to examine the creation/
modification dates of the element associated with the implicit
object version and an adjacent element associated with an
explicit object version in order to determine which is the latest
object version for the given key. In the example illustrated in
FIG.12,a GET OBJECT specitying user key B may compare
the creation/modification dates of the implicit object repre-
sented by the fourth element of key map 1200, shown as
“B(sentinel)” in FIG. 12C, and the explicit object represented
by the fifth element of key map 1200 (labeled as B#1), and
may return the data of the object with the most recent cre-
ation/modification date, as follows:

GetNearest (B)=>Latest (B, B#1)

In some embodiments, security may be added to a bucket
by configuring a bucket to enable MFA (Multi-Factor
Authentication) Delete. In such embodiments, if MFA is
enabled, the bucket owner (or other privileged user) may need
to include two forms of authentication in any request to delete
an object version or to change the versioning state of the
bucket.

In some embodiments, the storage systems described
herein may provide the operations described above using
standards-based Representational State Transfer (REST)
and/or Simple Object Access Protocol (SOAP) interfaces
designed to work with a variety of applications, development
tools, and/or Internet-development toolkits. These interfaces
are similar, but there are some differences. For example, in the
REST interface, metadata is returned in HTTP headers. If the
storage system only supports HTTP requests of up to a given
size (e.g., 4 KB, not including the body), the amount of
metadata that may be associated with a stored object may be
restricted. Using REST, standard HTTP requests may be
issued to create, fetch, and delete buckets and/or objects
thereof. In various embodiments, a user may employ a toolkit
that supports HTTP in order to use the REST API, or may use
a browser to fetch objects, as long as they are anonymously
readable. A REST API may use standard HTTP headers and
status codes, so that standard browsers and toolkits work as
expected. In some embodiments, functionality may be added
to HTTP (for example, headers may be added to support
access control). In such embodiments, the functionality may
be added such that it matches the style of standard HTTP
usage. In some embodiments, a SOAP API may provide a
SOAP interface (e.g., a SOAP 1.1 interface) using document
literal encoding. As with the REST interface, users may
employ a SOAP toolkit to create bindings, and then may write
code that uses these bindings to communicate with the stor-
age system.

An example of an API that provides access operations in an
online or remote storage system that supports object version-
ing is described in detail below, according to one embodi-
ment. In this example, a PUT or PUT OBJECT operation may
specify any or all of the following information for the request,
some of which may be input by a user, and some of which may
be generated and/or attached to the request by a client or host
process: a user key, a bucket identifier, a user/subscriber iden-
tifier, an authorization code, a date and/or time stamp reflect-
ing the date/time of the request, the content type, and/or the

US 9,235,476 B2

29

content size of the data object (e.g., the number of bytes of
content stored in the data object). In response, the storage
system may return any or all of the following: a status indi-
cator reflecting the success or failure of the operation, an
identifier of the request, an internal identifier assigned to the
newly stored data object, the version-id assigned by the stor-
age system to the data object, a date and/or time stamp reflect-
ing the date/time at which the data object was stored (e.g., the
date/time at which the operation was completed), and/or an
identifier of a server on which the data object was stored. In
other embodiments, information other that than described
above may be included in a PUT or PUT OBJECT request or
response.

In this example, a GET OBJECT operation may specify
any or all of the following information for the request, some
of which may be input by a user, and some of which may be
generated and/or attached to the request by a client or host
process: a user key, a version-id, a bucket identifier, a user/
subscriber identifier, an authorization code, and/or a date or
time stamp reflecting the date/time of the request. In
response, the storage system may return any or all of the
following, in addition to the requested object data: a status
indicator reflecting the success or failure of the operation, an
internal identifier of the object, an identifier of the request, the
version-id of the data object returned in response to the
request, a date and/or time stamp reflecting the date/time at
which the data object was stored (e.g., the date/time at which
the operation was completed), a date and/or time stamp
reflecting the last time the returned data object was modified,
the content size of the returned data object (e.g., in bytes), the
content type of the returned data object, and/or an identifier of
a server from which the data object was retrieved. In other
embodiments, information other that than described above
may be included in a GET OBJECT request or response.

In this example, a COPY OBJECT operation may specify
any or all of the following information for the request, some
of which may be input by a user, and some of which may be
generated and/or attached to the request by a client or host
process: a source user key, a version-id, a source bucket
identifier, a destination bucket identifier, a destination user
key, a user/subscriber identifier, an authorization code, and/or
a date or time stamp reflecting the date/time of the request. In
response, the storage system may return any or all of the
following: a status indicator reflecting the success or failure
of the operation, an internal identifier of the source data
object, an internal identifier of the copy of the data object, an
identifier of the request, the version-id of the source data
object (i.e. the version-id of a specified source data object, or
of the latest version of a data object, if no version-id was
specified), the version-id assigned to the newly created copy
of the data object, a date and/or time stamp reflecting the
date/time at which the copy of the data object was stored (e.g.,
the date/time at which the operation was completed), a date
and/or time stamp reflecting the last time the data object was
modified (which may be the same as the date and/or time
stamp reflection the time at which the COPY OBJECT opera-
tion was completed), the content size ofthe copied data object
(e.g., in bytes), the content type of the copied data object, an
identifier of a server from which the data object was retrieved,
and/or an identifier of a server on which the copy of the data
object was stored. In other embodiments, information other
that than described above may be included in a COPY
OBJECT request or response.

In this example, a LIST BUCKET operation may specify
any or all of the following information for the request, some
of which may be input by a user, and some of which may be
generated and/or attached to the request by a client or host

10

15

20

25

30

35

40

45

50

55

60

65

30

process: a bucket identifier, a user/subscriber identifier, an
authorization code, a maximum number of user keys for
which data should be included in the response, a prefix and/or
a delimiter that may be used to filter the results of the opera-
tion, and/or a date or time stamp reflecting the date/time of the
request. In various embodiments, this API may behave the
same irrespective of the current versioning state of the target
bucket. In some embodiments, the requester may need to have
permission to view and/or retrieve objects in the target bucket
in order to perform this operation.

In response to a LIST BUCKET operation, the storage
system may return any or all of the following: a status indi-
cator reflecting the success or failure of the operation, an
identifier of the request, the bucket identifier, a date and/or
time stamp reflecting the date/time at which the list of data
object versions was retrieved (e.g., the date/time at which the
operation was completed), a maximum number of user keys
for which data should be included in the response, an indica-
tion of whether the returned list has been truncated (e.g.,
based on a specified maximum number of user keys), a prefix
and/or a delimiter that was used to filter the results of the
operation, and a list of the data object versions stored in the
bucket that are accessible without specifying a version-id. In
this example, each of the elements of the list of data object
versions may include any or all of the following: an internal
identifier of the object, the version-id of the listed version of
the data object, a date and/or time stamp reflecting the last
time the listed version of the data object was modified, the
content size of the listed version of the data object (e.g., in
bytes), the content type of the listed data object, an identifier
of the server on which the listed data object is stored, and/or
an identifier or display name of the owner of the listed data
object. In other embodiments, information other that than
described above may be included ina LIST BUCKET request
or response.

Inthis example, a LIST VERSIONS operation may specify
any or all of the following information for the request, some
of which may be input by a user, and some of which may be
generated and/or attached to the request by a client or host
process: a bucket identifier, a user/subscriber identifier, an
authorization code, a maximum number of user keys for
which data should be included in the response, a prefix and/or
a delimiter that may be used to filter the results of the opera-
tion, a key marker and/or version-id marker (such as those
described above) specifying a point at which a search for
results should begin, and/or a date or time stamp reflecting the
date/time of the request. In other embodiments, this API may
behave the same irrespective of the current versioning state of
the target bucket. In some embodiments, the requester may
need to have permission to view and/or retrieve object ver-
sions in the target bucket in order to perform this operation.

In response to a LIST VERSIONS operation, the storage
system may return any or all of the following: a status indi-
cator reflecting the success or failure of the operation, an
identifier of the request, the bucket identifier, a date and/or
time stamp reflecting the date/time at which the list of data
object versions was retrieved (e.g., the date/time at which the
operation was completed), a maximum number of user keys
for which data should be included in the response, an indica-
tion of whether the returned list has been truncated (e.g.,
based on a specified maximum number of user keys), a prefix
and/or a delimiter that was used to filter the results of the
operation, and a list of the data object versions stored in the
bucket that are accessible without specifying a version-id. In
this example, each of the elements of the list of data object
versions may include any or all of the following: an internal
identifier of the object, the version-id of the listed version of

US 9,235,476 B2

31

the data object, a date and/or time stamp reflecting the last
time the listed version of the data object was modified, the
content size of the listed version of the data object (e.g., in
bytes), the content type of the listed data object, an identifier
of the server on which the listed data object is stored, an
identifier and/or display name of the owner of the listed data
object, an indication of whether the data object version is the
latest version of the stored data objects having the same user
key, an indication of whether the data object version is a
delete marker, and/or an identifier of a storage class. In other
embodiments, information other that than described above
may be included in a LIST VERSIONS request or response.

In this example, a DELETE KEY operation may specify
any or all of the following information for the request, some
of which may be input by a user, and some of which may be
generated and/or attached to the request by a client or host
process: a user key, a bucket identifier, a user/subscriber iden-
tifier, an authorization code, a content type, and/or a date or
time stamp reflecting the date/time of the request. In
response, the storage system may return any or all of the
following: a status indicator reflecting the success or failure
of'the operation (e.g., a “204 No Content” indication may be
returned if the delete operation is successful), an identifier of
the request, the version-id assigned to the delete marker cre-
ated in response to the request, an internal identifier of the
delete marker, a date and/or time stamp reflecting the date/
time at which the delete marker was stored (e.g., the date/time
at which the operation was completed), the content size of the
delete marker (e.g., zero), and/or an identifier of a server on
which the delete marker was stored. In other embodiments,
information other that than described above may be included
in a DELETE KEY request or response.

In this example, a DELETE VERSION operation may
specify any or all of the following information for the request,
some of which may be input by a user, and some of which may
be generated and/or attached to the request by a client or host
process: a user key, a version-id, a bucket identifier, a user/
subscriber identifier, an authorization code, a content type,
and/or a date or time stamp reflecting the date/time of the
request. In response to a DELETE VERSION request, the
storage system may return any or all of the following: a status
indicator reflecting the success or failure of the operation
(e.g., a “204 No Content” indication may be returned if the
delete operation is successful), an identifier of the request, the
version-id of the deleted object, a date and/or time stamp
reflecting the date/time at which the object was deleted (e.g.,
the date/time at which the operation was completed), the
content size of the object following deletion (e.g., zero), an
indication of whether the deleted object was a delete marker,
and/or an identifier of a server from which the object was
deleted. In other embodiments, information other that than
described above may be included in a DELETE VERSION
request or response.

In this example, a GET VERSIONING operation may
specify any or all of the following information for the request,
some of which may be input by a user, and some of which may
be generated and/or attached to the request by a client or host
process: a bucket identifier, a user/subscriber identifier, an
authorization code, a content type of the data requested (e.g.,
the type of a state variable whose value indicates the version-
ing state, such as “text”), and/or a date or time stamp reflect-
ing the date/time of the request. In response, the storage
system may return any or all of the following: the bucket
identifier, the value of the versioning state of the bucket, a
status indicator reflecting the success or failure of the opera-
tion, an identifier of the request, a date and/or time stamp
reflecting the date/time at which the operation was com-

10

15

20

25

30

35

40

45

50

55

60

65

32

pleted, the content size of the returned data (e.g., the size of
the state information returned, in bytes), the content type of
the returned data (e.g., text), and/or an identifier of a server
from which the data was retrieved. In other embodiments,
information other that than described above may be included
in a GET VERSIONING request or response.

In this example, a PUT VERSIONING operation may
specify any or all of the following information for the request,
some of which may be input by a user, and some of which may
be generated and/or attached to the request by a client or host
process: a bucket identifier, a user/subscriber identifier, an
authorization code, the content size of the data to be stored in
a state variable whose value reflects the versioning state (e.g.,
the size of the state information to be stored, in bytes), the
content type of the data to be stored (e.g., text), the value to be
stored (e.g., in a state variable) to indicate the new versioning
state, and/or a date or time stamp reflecting the date/time of
the request. In response, the storage system may return any or
all of the following: the bucket identifier, the value of the new
versioning state of the bucket, a status indicator reflecting the
success or failure of the operation, an identifier of the request,
a date and/or time stamp reflecting the date/time at which the
operation was completed, the content size of the returned
stored (e.g., the size of the state information stored, in bytes),
the content type of the returned data (e.g., text), and/or an
identifier of a server one which the data was stored. In other
embodiments, information other that than described above
may be included in a PUT VERSIONING request or
response.

In this example, a PUT ACL operation may specify any or
all of the following information for the request, some of
which may be input by a user, and some of which may be
generated and/or attached to the request by a client or host
process: a bucket identifier, a user key, a version-id, a user/
subscriber identifier, an authorization code, the content size
of'the access control list to be PUT to the object specified by
the user key and/or version-id, the access control list to be
PUT to the object, an identifier or display name of the owner
of'the targeted bucket, object, or access control policy, and/or
a date or time stamp reflecting the date/time of the request. In
response, the storage system may return any or all of the
following: a status indicator reflecting the success or failure
of the operation, an internal identifier of the object, an iden-
tifier of the request, the version-id of the object to which the
ACL was PUT, a date and/or time stamp reflecting the date/
time at which the ACL was stored (e.g., the date/time at which
the operation was completed), a date and/or time stamp
reflecting the last time the ACL for the object was modified,
and/or an identifier of a server from which the data object was
retrieved. In other embodiments, information other that than
described above may be included in a PUT ACL request or
response. In some embodiments, the APl may define an
operation to associate metadata with an object or store meta-
data in an object other than an ACL (e.g., the API may define
a store type operation for another type of metadata), and such
anoperation may behave in a manner similar to that described
above for a PUT ACL operation.

In this example, a GET ACL operation may specify any or
all of the following information for the request, some of
which may be input by a user, and some of which may be
generated and/or attached to the request by a client or host
process: a user key, a version-id, a bucket identifier, a user/
subscriber identifier, an authorization code, and/or a date or
time stamp reflecting the date/time of the request. In
response, the storage system may return any or all of the
following: a status indicator reflecting the success or failure
of'the operation, an internal identifier of the object for which

US 9,235,476 B2

33

the ACL was retrieved, an identifier of the request, the ver-
sion-id of the object for which the ACL was retrieved, a date
and/or time stamp reflecting the date/time at which the ACL
was retrieved (e.g., the date/time at which the operation was
completed), a date and/or time stamp reflecting the last time
the returned ACL was modified, the content size of the
returned data (e.g., the size of the ACL, in bytes), the content
type of the returned data, the ACL data itself, an identifier or
display name of the owner of the targeted bucket, object, or
access control policy, and/or an identifier of a server from
which the data object was retrieved. In other embodiments,
information other that than described above may be included
ina GET ACL request or response. In some embodiments, the
API may define an operation to retrieve metadata associated
with an object or stored in an object other than an ACL (e.g.,
the API may define a retrieve type operation for another type
of metadata), and such an operation may behave in a manner
similar to that described above for a GET ACL operation.

Note that in some embodiments of the APIs described
herein, various pairs of operations may be initiated by a
user/requester using the same API, but the requester may
specify a different number of input parameter values for the
two operations (e.g., the requester may specify an additional
version-id value for one operation in the pair). In such
embodiments, PUT, GET, COPY, and DELETE type opera-
tions may be invoked by a requester without the requester
being aware of (or needing to know) the versioning state of
the target bucket in the storage system. In such embodiments,
aprivileged user may initiate version-specific operations (e.g.
for GET, COPY, and/or DELETE type operations) using
these same APIs by specifying an additional input (i.e. a
version-id value) in the operation call. In other embodiments,
different APIs may be defined for two similar operations, one
of'which expects a version-id value to be specified, and one of
which does not include (or expect) a version-id value to be
specified. For example, the GET OBJECT API described
herein may be invoked with or without specifying a version-
id. In other embodiments, two different APIs may be defined
for a GET OBJECT type operation (e.g., a GET KEY opera-
tion that does not take a version-id input, and a GET OBJECT
VERSION operation that takes an additional version-id
input). Similarly, the COPY OBJECT API described herein
may be invoked with or without specifying a version-id. How-
ever, in other embodiments, two COPY OBIJECT type APIs
may be defined (only one of which takes a version-id input).
Conversely, two different DELETE OBJECT type APIs (DE-
LETE KEY and DELETE VERSION) are defined herein. In
other embodiments, a single DELETE OBJECT API may be
defined that can be invoked with or without specifying a
version-id value.

In some embodiments, the system and methods described
herein for versioning of stored objects may be employed by a
storage service that provides storage for subscribers as part of
a virtualized computing service. In various embodiments,
virtualized computing may be offered as an on-demand, paid
service to clients, and may include a virtualized storage ser-
vice, which may in some embodiments support object ver-
sioning, as described herein. For example, an enterprise may
assemble and maintain the various hardware and software
components used to implement virtualized computing, and
may offer clients access to these resources according to vari-
ous pricing models (e.g., usage-based pricing, subscription
pricing, etc.). Thus, clients may have access to a range of
virtual computing resources without having to incur the costs
of provisioning and maintaining the infrastructure needed to
implement those resources.

10

15

20

25

30

35

40

45

50

55

60

65

34

Example Computer System Embodiment

It is contemplated that in some embodiments, any of the
methods, techniques or components described herein may be
implemented as instructions and data capable of being stored
or conveyed via a computer-accessible medium. Such meth-
ods or techniques may include, for example and without
limitation, various methods of configuring and initializing a
storage system that supports versioning, and performing vari-
ous operations to store, retrieve, modify and otherwise access
data objects and/or access control lists thereof on that storage
system according to the APIs described herein. Such instruc-
tions may be executed to perform specific computational
functions tailored to specific purposes (e.g., processing web
services traffic; performing high-precision numerical arith-
metic; storing, retrieving, modifying and/or otherwise
accessing data objects and/or access control lists thereof;
maintaining multiple versions of stored data objects, etc.) as
well as higher-order functions such as operating system func-
tionality, virtualization functionality, network communica-
tions functionality, application functionality, storage system
functionality, and/or any other suitable functions.

One example embodiment of a computer system that
includes computer-accessible media and that supports ver-
sioning of stored objects is illustrated in FIG. 13. In various
embodiments, the functionality of any of the various modules
or methods described herein may be implemented by one or
several instances of computer system 1300. In particular, it is
noted that different elements of the system described herein
may be implemented by different computer systems 1300.
For example, a storage system that supports the versioning
functionality described herein may be implemented on the
same computer system 1300 on which a client (through which
a user/requester accesses the storage system) executes, or on
another computer system 1300, in different embodiments.

In the illustrated embodiment, computer system 1300
includes one or more processors 1310 coupled to a system
memory 1320 via an input/output (1/0) interface 1330. Com-
puter system 1300 further includes a network interface 1340
coupled to I/O interface 1330. In various embodiments, com-
puter system 1300 may be a uniprocessor system including
one processor 1310, or a multiprocessor system including
several processors 1310 (e.g., two, four, eight, or another
suitable number). Processors 1310 may be any suitable pro-
cessor capable of executing instructions. For example, in
various embodiments processors 1310 may be a general-
purpose or embedded processor implementing any of a vari-
ety of instruction set architectures (ISAs), such as the x86,
PowerPC™, SPARC™, or MIPS™ [SAs, or any other suit-
able ISA. In multiprocessor systems, each of processors 1310
may commonly, but not necessarily, implement the same ISA.

System memory 1320 may be configured to store instruc-
tions (e.g., code 1325) and data (e.g., in data store 1322)
accessible by processor 1310. In various embodiments, sys-
tem memory 1320 may be implemented using any suitable
memory technology, such as static random access memory
(SRAM), synchronous dynamic RAM (SDRAM), nonvola-
tile/Flash-type memory, or any other type of memory. In the
illustrated embodiment, instructions and data implementing
desired functions, methods or techniques (such as function-
ality for supporting versioning of stored data objects, and for
performing various operations to store, retrieve, modify and
otherwise access data objects and/or access control lists
thereof on a storage system according to the APIs described
herein), are shown stored within system memory 1320 as
code 1325. It is noted that in some embodiments, code 1325
may include instructions and data implementing desired
functions that are not directly executable by processor 1310

US 9,235,476 B2

35

but are represented or encoded in an abstract form that is
translatable to instructions that are directly executable by
processor 1310. For example, code 1325 may include instruc-
tions specified in an ISA that may be emulated by processor
1310, or by other code 1325 executable on processor 1310.
Alternatively, code 1325 may include instructions, proce-
dures or statements implemented in an abstract programming
language that may be compiled or interpreted in the course of
execution. As non-limiting examples, code 1325 may include
code specified in a procedural or object-oriented program-
ming language such as C or C++, a scripting language such as
perl, a markup language such as HTML or XML, or any other
suitable language. In some embodiments, objects (e.g., data
objects and/or delete marker objects in one or more buckets)
and/or access control lists thereof may be stored in a data store
1322 within system memory 1320.

In one embodiment, I/O interface 1330 may be configured
to coordinate /O traffic between processor 1310, system
memory 1320, and any peripheral devices in the device,
including network interface 1340 or other peripheral inter-
faces. In some embodiments, I/O interface 1330 may perform
any necessary protocol, timing or other data transformations
to convert data signals from one component (e.g., system
memory 1320) into a format suitable for use by another com-
ponent (e.g., processor 1310). In some embodiments, 1/O
interface 1330 may include support for devices attached
through various types of peripheral buses, such as a variant of
the Peripheral Component Interconnect (PCI) bus standard or
the Universal Serial Bus (USB) standard, for example. In
some embodiments, the function of /O interface 1330 may be
split into two or more separate components, such as a north
bridge and a south bridge, for example. Also, in some
embodiments some or all of the functionality of 1/O interface
1330, such as an interface to system memory 1320, may be
incorporated directly into processor 1310.

Network interface 1340 may be configured to allow data to
be exchanged between computer system 1300 and other
devices attached to network 130, such as other computer
systems, for example. In various embodiments, network
interface 1340 may support communication via wired or
wireless general data networks, such as any suitable type of
Ethernet network, for example; via telecommunications/tele-
phony networks such as analog voice networks or digital fiber
communications networks; via storage area networks such as
Fibre Channel SANs, or via any other suitable type of net-
work and/or protocol.

In some embodiments, system memory 1320 may include
a non-transitory, computer-accessible storage medium con-
figured to store instructions and data as described above.
However, in other embodiments, instructions and/or data may
be received, sent or stored upon different types of computer-
accessible storage media. Generally speaking, a computer-
accessible storage medium may include storage media or
memory media such as magnetic or optical media, e.g., disk
or CD/DVD-ROM coupled to computer system 1300 via [/O
interface 1330. A computer-accessible storage medium may
also include any volatile or non-volatile storage media such as
RAM (e.g. SDRAM, DDR SDRAM, RDRAM, SRAM, etc.),
ROM, etc, that may be included in some embodiments of
computer system 1300 as system memory 1320 or another
type of memory. A computer-accessible storage medium may
generally be accessible via transmission media or signals
such as electrical, electromagnetic, or digital signals, con-
veyed via a communication medium such as a network and/or
a wireless link, such as may be implemented via network
interface 1340.

30

35

40

45

60

36

Although the embodiments above have been described in
considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the above
disclosure is fully appreciated. It is intended that the follow-
ing claims be interpreted to embrace all such variations and
modifications.

What is claimed is:

1. A system, comprising:

a data store that stores a plurality of objects, wherein each
of the plurality of objects is identified by a combination
of a corresponding key and a corresponding version
identifier;

a memory coupled to one or more processors and storing
program instructions that when executed by the one or
more processors cause the one or more processors to:
receive a request to perform a delete operation specify-

ing a key;
determine whether the request to perform the delete
operation specifies a version identifier corresponding
to the key specified in the request; and
in response to determining that the request does not
specify a version identifier corresponding to the
specified key:
generate a new, unique version identifier;
create a delete marker object identified by the speci-
fied key and the new, unique version identifier;
refrain from deleting, in response to receiving the
request to perform a delete operation, any of the
plurality of objects previously stored in the data
store; and
store the delete marker object in the data store,
wherein the presence of the delete marker object in
the data store indicates a logical deletion of the
specified key.
2. The system of claim 1, wherein the key and the version
identifier of each object form a composite key for the object.
3. The system of claim 2, wherein at least some of the
plurality of objects stored in the data store further comprise
object data, and wherein the composite key is stored with the
object.
4. The system of claim 1, wherein the delete marker object
becomes the latest object version that is stored in the data
store corresponding to the specified key.
5. The system of claim 1, wherein the data store is part of a
network-based data storage service, and wherein the request
to perform the delete operation is received from a particular
user of a plurality of users of the network-based data storage
service.
6. The system of claim 1, wherein the data store is part ofa
network-based data storage service, and wherein the request
to perform the delete operation is received via an application
program interface (API) of the network-based data storage
service from a client application or process.
7. The system of claim 1, wherein the program instructions
are further executable by the one or more processors to cause
the one or more processors to:
receive a second request to perform a delete operation,
wherein the second request specifies the same specified
key but does not specify a version identifier; and
in response to receiving the second request:
generate a second, unique version identifier;
create a second delete marker object identified by the
second, unique version identifier and the specified
key;

refrain from deleting any of the plurality of objects
stored in the data store; and

store the second delete marker object in the data store.

US 9,235,476 B2

37

8. The system of claim 1, wherein the program instructions
are further executable by the one or more processors to cause
the one or more processors to:
receive a second request to perform a delete operation,
wherein the second request specifies a particular key and
a version identifier; and

in response to receiving the second request, delete an
object from the data store identified by both the specified
particular key and the specified version identifier.

9. A non-transitory, computer-readable storage medium
storing program instructions that when executed on one or
more computers cause the one or more computers to:

determine, in response to receiving a request to perform a

delete operation that specifies a particular key, whether

the request to perform the delete operation specifies a

version identifier for the particular key; wherein the

particular key and a version identifier collectively iden-

tify a particular object of a plurality of objects stored in

a data store; and

in response to determining that the request does not specify

a version identifier for the particular key:

generate a new, unique version identifier;

create a delete marker object identified by the particular
key and the new, unique version identifier;

refrain from deleting, in response to receiving the
request to perform a delete operation, any of the plu-
rality of objects stored in the data store; and

store the delete marker object in the data store, wherein
the presence of the delete marker object in the data
store indicates a logical deletion of the particular key.

10. The non-transitory, computer readable storage medium
of claim 9, wherein the program instructions when executed
on the one or more computers further cause the one or more
computers to make the delete marker object become the latest
object version that is stored in the memory corresponding to
the particular key.

11. The non-transitory, computer readable storage medium
of claim 9, wherein the delete marker object does not contain
object data.

12. The non-transitory, computer readable storage medium
of claim 9, wherein at least some of the plurality of objects
stored in the data store comprise object data and wherein the
program instructions when executed on the one or more com-
puters further cause the one or more computers to:

receive, subsequent to storing the delete marker object, a

request to retrieve an object, wherein the request speci-
fies the particular key; and

in response to receiving the request to retrieve the object:

return an error indication; and
refrain from returning object data contained in any of the
plurality of objects stored in the data store.

13. The non-transitory, computer readable storage medium
of claim 9, wherein the program instructions when executed
on the one or more computers further cause the one or more
computers to:

generate, in response to receiving a second request to per-

form a delete operation, a second, unique version iden-
tifier, wherein the second request specifies the particular
key but does not specify a version identifier;

create a second delete marker object identified by the sec-

ond, unique version identifier and the particular key;
refrain from deleting any of the plurality of objects stored
in the data store; and
store the second delete marker object in the data store.

10

15

20

25

30

35

40

45

50

55

60

65

38

14. The non-transitory, computer readable storage medium
of claim 9, wherein the program instructions when executed
on the one or more computers further cause the one or more
computers to:

in response to receiving a second request to perform a

delete operation, wherein the second request specifies a
key and a version identifier, delete an object from the
data store identified by the specified key and the speci-
fied version identifier.

15. The non-transitory, computer readable storage medium
of claim 14, wherein the specified key is the particular key,
wherein the specified version identifier is the new, unique
version identifier, and wherein said delete an object com-
prises deleting the delete marker object.

16. The non-transitory, computer readable storage medium
of claim 9, wherein the program instructions when executed
on the one or more computers further cause the one or more
computers to:

store the new unique version identifier in a data store sepa-

rate from the data store storing the plurality of objects.

17. A method, performed by one or more computers, com-
prising:

receiving, by the one or more computers, a request to

perform a delete operation, wherein the request specifies
aparticular key; wherein the particular key and a version
identifier collectively identify a particular object of a
plurality of objects stored in a data store;

determining whether the request to perform the delete

operation specifies a version identifier for the particular
key; and

in response to determining that the request does not specify

a version identifier for the particular key:

generating a new, unique version identifier;

creating a delete marker object identified by the particu-
lar key and the new, unique version identifier;

refraining from deleting, in response to receiving the
request to perform a delete operation, any of the plu-
rality of objects previously stored in the data store;
and

storing the delete marker object in the data store,
wherein the presence of the delete marker object inthe
data store indicates a logical deletion of the particular
key.

18. The method of claim 17, wherein at least some of the
plurality of objects stored in the data store comprise object
data, and wherein the method further comprises, subsequent
to said storing the delete marker object:

receiving a request to retrieve an object, wherein the

request specifies the particular key; and

in response to receiving the request to retrieve an object:

returning an error indication; and
refraining from returning object data contained in any of
the plurality of objects stored in the data store.

19. The method of claim 17, further comprising, subse-
quent to said storing the delete marker object:

receiving a second request to perform a delete operation,

wherein the second request specifies the particular key
but does not specify a version identifier; and

in response to receiving the second request:

generating a second, unique version identifier;

creating a second delete marker object identified by the
second, unique version identifier and the particular
key;

refraining from deleting any of the plurality of objects
stored in the data store; and

storing the second delete marker object in the data store.

US 9,235,476 B2
39

20. The method of claim 17, further comprising, subse-
quent to said storing the delete marker object:
receiving a second request to perform a delete operation,
wherein the second request specifies the particular key
and the new unique version identifier; and 5
in response to receiving the second request, deleting the
delete marker object from the memory.

#* #* #* #* #*

40

